US 20200111976A1 ### (19) United States ## (12) Patent Application Publication (10) Pub. No.: US 2020/0111976 A1 (43) Pub. Date: Apr. 9, 2020 Formula I # (54) ORGANIC ELECTROLUMINESCENT (71) Applicant: Universal Display Corporation, MATERIALS AND DEVICES Ewing, NJ (US) (72) Inventors: Jui-Yi Tsai, Newtown, PA (US); Pierre-Luc T. Boudreault, Pennington, NJ (US); Erik Mora, Zaragoza (ES) (21) Appl. No.: 16/583,484 (22) Filed: Sep. 26, 2019 ### Related U.S. Application Data (60) Provisional application No. 62/742,595, filed on Oct. 8, 2018. ### **Publication Classification** (51) **Int. Cl.** H01L 51/00 (2006.01) C09K 11/06 (2006.01) C07F 15/00 (2006.01) (52) U.S. Cl. (57) ABSTRACT A compound of Formula I wherein L is a bidentate ligand coordinated to a metal M; each ring K is the same, and represents a 5-membered or 6-membered heteroaryl ring and with ring J forms a 5-member cyclometallated ring; A¹ and A¹ are the same and selected from CR¹ or N; A² and A² are the same and selected from CR² or N; A³ and A³ are the same and selected from CR³ or N; each R⁴ with its corresponding ring position R⁴ are the same, and R¹ to R⁵ are as defined in the specification. An OLED with an organic layer that includes a compound of Formula I and a consumer product that includes the OLED. A method of making a compound of Formula I is also described. Figure 1 Figure 2 Figure 3 Compound 8 Figure 4 Figure 5 ### ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES ### CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/742,595, filed Oct. 8, 2018, the entire contents of which are incorporated herein by reference. ### **FIELD** [0002] The present invention relates to compounds for use as emitters, and devices, such as organic light emitting diodes, including the same. #### **BACKGROUND** [0003] Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants. [0004] OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety. [0005] One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as "saturated" colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single EML device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art. [0006] One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted $Ir(ppy)_3$, which has the following structure: [0007] In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line. [0008] As used herein, the term "organic" includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. "Small molecule" refers to any organic material that is not a polymer, and "small molecules" may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule" class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a "small molecule," and it is believed that all dendrimers currently used in the field of OLEDs are small molecules. [0009] As used herein, "top" means furthest away from the substrate, while "bottom" means closest to the substrate. Where a first layer is described as "disposed over" a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is "in contact with" the second layer. For example, a cathode may be described as "disposed over" an anode, even though there are various [0010] As used herein, "solution processable" means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form. organic layers in between. [0011] A ligand may be referred to as "photoactive" when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as "ancillary" when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand. [0012] As used herein, and as would be generally understood by one skilled in the art, a first "Highest Occupied Molecular Orbital" (HOMO) or "Lowest Unoccupied Molecular Orbital" (LUMO) energy level is "greater than" or "higher than" a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A "higher" HOMO or LUMO energy level appears closer to the top of such a diagram than a "lower" HOMO or LUMO energy level. [0013] As used herein, and as would be generally understood by one skilled in the art, a first work function is "greater than" or "higher than" a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a "higher" work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a "higher" work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions. [0014] More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety. #### **SUMMARY** [0015] One aspect is a compound of Formula I $\begin{array}{c|c} \underline{K} & R^4 & R^5 \\ \underline{N} & \underline{J} & A^1 \\ A^{3'} & A^2 \end{array}$ $\begin{array}{c|c} \underline{K} & \underline{J} & A^{1'} \\ \underline{J} & A^{3'} \end{array}$ [0016] wherein [0017] L is a bidentate ligand coordinated to a metal M; [0018] each ring K is the same, and represents a 5-membered or 6-membered heteroaryl ring and with ring J forms a 5-member cyclometallated ring; [0019] A^1 and $A^{1'}$ are the same and selected from CR^1 or N; A^2 and $A^{2'}$ are the same and selected from CR^2 or N; A^3 and A^3 are the same and selected from CR^3 or N; each R^4 with its corresponding ring position $R^{4'}$ are the same, wherein R^4 or $R^{4'}$ represent mono to the maximum allowable substitution, or no substitution, [0020] R¹, R², R³, and each R⁴ are independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; or optionally, any two adjacent groups R^1 , R^2 , R^3 , or any two adjacent groups R^4 , can join to form a carbocyclic ring or a heterocyclic ring, which is optionally substituted; [0021] R^5 is selected from the group consisting of alkyl, cycloalkyl, heteroalkyl, halogen, silyl, aryl, heteroaryl, and any combination thereof; and optionally, each of which is substituted. [0022] Another aspect is an OLED that includes an organic layer comprising the compound of Formula I. A consumer product comprising the OLED is also disclosed. [0023] Another aspect is a compound of Formula II Formula II $A^{3'}$ $A^{1'}$ $A^{2'}$ $A^{1'}$ $A^{2'}$ $A^{1'}$ $A^{2'}$ $A^{1'}$ $A^{2'}$ $A^{1'}$ $A^{2'}$
$A^{1'}$ $A^{2'}$ $A^{2'}$ $A^{2'}$ $A^{2'}$ $A^{3'}$ [0024] wherein Formula I [0025] each ring K is the same, and represents a 5-membered or 6-membered heteroaryl ring and with ring J forms a 5-member cyclometallated ring; [0026] A^1 and $A^{1'}$ are the same and selected from CR^1 or N; A^2 and $A^{2'}$ are the same and selected from CR^2 or N; A^3 and A^3' are the same and selected from CR^3 or N; each R^4 with its corresponding ring position $R^{4'}$ are the same, wherein R^4 or $R^{4'}$ represent mono to the maximum allowable substitution, or no substitution, [0027] R¹, R², R³, and each R⁴ are independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; or optionally, any two adjacent groups R¹, R², R³, or any two adjacent groups R⁴, can join to form a carbocyclic ring or a heterocyclic ring, which is optionally substituted; and [0028] G is a halogen selected from Cl, Br, or I, or G is selected from the group consisting of alkyl, cycloalkyl, heteroalkyl, silyl, aryl, heteroaryl, and any combination thereof; and optionally, each of which is partially or fully substituted with deuterium. [0029] A method of making a compound of Formula I is also described. The method comprises: [0030] reacting approximately four molar equivalents of a compound of Formula KJ with $[MX^1(L_1)(L_2]_2$ at a temperature in a range from 100° C. to 160° C. to provide a product mixture that includes a compound of Formula II; Formula I Formula II J J J [0031] reacting the compound of Formula II with a bidenate ligand L; [0032] wherein each ring K is the same, and represents a 5-membered or 6-membered heteroaryl ring and with ring J forms a 5-member cyclometallated ring; [0033] A¹ and A¹ are the same and selected from CR¹ or N; A² and A² are the same and selected from CR² or N; A³ and A3' are the same and selected from CR3 or N; each R4 with its corresponding ring position R4 are the same, wherein R⁴ or R⁴ represent mono to the maximum allowable substitution, or no substitution, [0034] R¹, R², R³, and each R⁴ are independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; or optionally, any two adjacent groups R¹, R², R³, or any two adjacent groups R⁴, can join to form a carbocyclic ring or a heterocyclic ring, which is optionally substituted; [0035] Hal is selected from Cl, Br, or I; and [0036] G is selected from the group consisting of alkyl, cycloalkyl, heteroalkyl, silyl, Cl, Br, I, aryl, heteroaryl, and any combination thereof; and optionally, each of which is partially or fully substituted with deuterium. ### BRIEF DESCRIPTION OF THE DRAWINGS [0037] FIG. 1 shows an organic light emitting device. [0038] FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer. [0039] FIG. 3 is a schematic representation of a process for the making of a compound of Formula I. [0040] FIG. 4 is an X-ray crystal structure for Compound 8 and Compound 9. [0041] FIG. 5 shows ORTEP diagrams of complexes 8 and 9 (50% probability ellipsoids). Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): for 8: Ir—N(1)=2.022(7), Ir—N(2)=2.042(7), Ir—O(1)=2.143 (6), $Ir \longrightarrow O(2) = 2.147(7)$, $Ir \longrightarrow C(1) = 1.987(9)$, $Ir \longrightarrow C(13) = 1$. 977(10), N(1)-Ir—N(2)=176.5(3), O(1)-Ir—C(1)=175.0(3), O(2)-Ir—C(13)=174.9(3). For 4: Ir—N(1)=2.021(7), Ir—N(2)=2.039(8), Ir—O(1)=2.136(7), Ir—O(2)=2.152(7), Ir—C (1)=1.985(10), Ir-C(18)=1.988(9), N(1)-Ir-N(2)=174.9(3), O(1)-Ir—C(18)=176.7(3), O(2)-Ir—C(1)=174.8(3). ### DETAILED DESCRIPTION [0042] Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an "exciton," which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable. [0043] The initial OLEDs used emissive molecules that emitted light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds. [0044] More recently, OLEDs having emissive materials that emit light from triplet states ("phosphorescence") have been demonstrated. Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, 1998; ("Baldo-I") and Baldo et al., "Very high-efficiency green organic lightemitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-II"), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference. [0045] FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference. [0046] More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F₄-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electricallyconductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. [0047] FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100. [0048] The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device
200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2. [0049] Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247, 190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve outcoupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties. [0050] Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing. [0051] Devices fabricated in accordance with embodiments of the present invention may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a "mixture", the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a nonpolymeric material consists essentially of polymeric silicon and inorganic silicon. [0052] Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, headsup displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.), but could be used outside this temperature range, for example, from -40 degree C. to +80 degree C. [0053] The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures. [0054] The terms "halo," "halogen," and "halide" are used interchangeably and refer to fluorine, chlorine, bromine, and iodine. [0055] The term "acyl" refers to a substituted carbonyl radical (C(O)— R_{\star}). [0056] The term "ester" refers to a substituted oxycarbonyl (—O—C(O)— R_s or —C(O)—O— R_s) radical. [0057] The term "ether" refers to an —OR_s radical. [0058] The terms "sulfanyl" or "thio-ether" are used interchangeably and refer to a $-SR_s$ radical. [0059] The term "sulfinyl" refers to a —S(O)— R_s radical. [0060] The term "sulfonyl" refers to a $-SO_2-R_s$ radical. [0061] The term "phosphino" refers to a — $P(R_s)_3$ radical, wherein each R_s can be same or different. [0062] The term "silyl" refers to a —Si(R_s)₃ radical, wherein each R_s can be same or different. [0063] In each of the above, R_s can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred R_s is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof. [0064] The term "alkyl" refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group is optionally substituted. [0065] The term "cycloalkyl" refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group is optionally substituted. [0066] The terms "heteroalkyl" or "heterocycloalkyl" refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group is optionally
substituted. [0067] The term "alkenyl" refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term "heteroalkenyl" as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group is optionally substituted. [0068] The term "alkynyl" refers to and includes both straight and branched chain alkyne radicals. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group is optionally substituted. [0069] The terms "aralkyl" or "arylalkyl" are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group is optionally substituted. [0070] The term "heterocyclic group" refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred heteronon-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted. [0071] The term "arvl" refers to and includes both singlering aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are "fused") wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group is optionally substituted. [0072] The term "heteroaryl" refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are "fused") wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and azanalogs thereof. Additionally, the heteroaryl group is optionally substituted. [0073] Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest. [0074] The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents. [0075] In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. [0076] In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof. [0077] In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, aryl, heteroaryl, sulfanyl, and combinations thereof. [0078] In yet other instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof. [0079] The terms "substituted" and "substitution" refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R^1 represents mono-substitution, then one R^1 must be other than H (i.e., a substitution). Similarly, when R^1 represents di-substitution, then two of R^1 must be other than H. Similarly, when R^1 represents no substitution, R^1 , for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms. [0080] As used herein, "combinations thereof" indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be Formula I combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium. [0081] The "aza" designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h] quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein. [0082] As used herein, "deuterium" refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., *Tetrahedron* 2015, 71, 1425-30 and Atzrodt et al., *Angew. Chem. Int. Ed.* (*Reviews*) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic
ring hydrogens with deuterium, respectively. [0083] It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent. [0084] In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, "adjacent" means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2' positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system. [0085] A compound of Formula I is described as follows, [0086] wherein [0087] L is a bidentate ligand coordinated to a metal M; [0088] each ring K is the same, and represents a 5-membered or 6-membered heteroaryl ring and with ring J forms a 5-member cyclometallated ring; **[0089]** A¹ and A^{1'} are the same and selected from CR^1 or N; A² and A^{2'} are the same and selected from CR^2 or N; A³ and A^{3'} are the same and selected from CR^3 or N; each R⁴ with its corresponding ring position R^{4'} are the same, wherein R⁴ or R^{4'} represent mono to the maximum allowable substitution, or no substitution, [0090] R¹, R², R³, and each R⁴ are independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; or optionally, any two adjacent groups R¹, R², R³, or any two adjacent groups R⁴, can join to form a carbocyclic ring or a heterocyclic ring, which is optionally substituted; [0091] R⁵ is selected from the group consisting of alkyl, cycloalkyl, heteroalkyl, halogen, silyl, aryl, heteroaryl, and any combination thereof; and optionally, each of which is optionally substituted. [0092] Additional embodiments of the compounds of Formula I can also include those compounds with R¹, R², R³, R⁴, and R⁵, being selected from any one group list of preferred general substituents, or any one group list of more preferred substituents, defined above. For example, in one embodiment, R¹, R², R³, R⁴, and R⁵ are independently hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof. **[0093]** The compounds of Formula I can be obtained from a synthetic process that comprises a reaction of a metal precursor compound $[MX^1(L_1)(L_2]_2$ and a bidentate ligand KJ at a temperature in a range from 85° C. to 160° C., ΚJ $$\mathbb{K}$$ \mathbb{K} [0094] wherein L_1 and L_2 are the same or different bidentate or olefin ligands; and X^1 is a bridge halogen selected from the group consisting of fluorine, chlorine, bromine, and iodine; and [0095] Hal is selected from Cl, Br, or I. [0096] In one embodiment, the metal precursor compound $[MX^1(L_1)(L_2]_2$ is selected from the group consisting of $[MX(COD)_2]_2$, $[MX(COE)_2]_2$, $[MX(CO)(PPh_3]_2$, $[MH(CO)(PPh_3]_2$, and $[M(COD)_2]^+A^-$, wherein A^- is a monoanion; wherein COD is cyclooctadiene, COE is cyclooctaethylene, and X is Br, Cl, or I. Precursor compounds with M as iridium is of particular interest. [0097] The above synthetic process to the compounds of Formula I provides a product mixture that includes X^1 bridged dimers of Formula XX, Formula HH and Formula XH, Formula XX Formula HH -continued Formula XH [0098] compound of Formula XH is obtained with a product selectivity of at least 70%. [0099] In accordance with the synthetic information described herein, reaction conditions can be optimized in terms of temperature, a metal precursor compound above, and solvent such that the product selectivity of compound of Formula XH is obtained in at least 70%, preferably in at least 75%, and more preferably in at least 80%. [0100] A method of making a compound of Formula I, the method comprising reacting approximately four molar equivalents of a compound of Formula KJ with [MX 1 (L $_1$) (L $_2$] $_2$ at a temperature in a range from 100° C. to 160° C. to provide a product mixture that includes a compound of Formula II-Hal; Formula II-Hal Formula I-Hal $$\begin{array}{c|c} & & \text{Hal} \\ & & \text{Mal} \\ & & \text{A}^{1} \\ & & \text{A}^{2} \\ & & \text{A}^{3^{2}} \\ & & \text{A}^{3^{2}} \end{array}$$ [0101] reacting the compound of Formula II-Hal with a bidentate ligand L to provide a compound of Formula I-Hal; and [0102] substituting the ring halogen to provide the compound of Formula I; [0103] wherein L_1 and L_2 , the metal M, X^1 , each ring K, Hal are as defined above. [0104] A^1 and A^1 , each R^4 , and R^5 is defined above. [0105] In one embodiment, the compounds of Formula I, Formula XX, Formula HH, and Formula XH will include a ring K selected from pyridyl, pryrimidyl, pyrazyl, or imidazolyl, each of which is optionally substituted as described above. For example, such optional substitution can be any group from list of preferred general substituents, or any group list of more preferred substituents, defined above. For example, in one embodiment, R¹, R², R³, R⁴, and R⁵ are independently hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof. [0106] In one embodiment, the compounds of Formula I, Formula XX, Formula HH, or Formula XH, or a compound of Formula II below, will include R¹, R², and R³, and each R⁴ as being independently hydrogen or a substituent group selected from the group consisting of: [0107] a C₁-C₆ alkyl, which is optionally substituted; [0108] a C_5 - C_{12} cycloalkyl, which is optionally substituted; [0109] a C_6 - C_{10} aryl, which is optionally substituted; [0110] a C_5 - C_{13} heteroaryl, which is optionally substituted; and [0111] any two adjacent R¹, R² and R³, or two adjacent R⁴, join to form a ring selected from the group consisting of a fused benzene ring or an aza-analog thereof, and a fused heterocyclic ring, each of which is optionally substituted. **[0112]** In an embodiment of interest, the compounds of Formula I, Formula XX, Formula HH, or Formula XH, or a compound of Formula II below, will include at least one of R^1 , R^2 , or R^3 is a C_1 - C_6 alkyl that is partially or fully deuterated, or at least one respective R^4 is a C_1 - C_6 alkyl that is partially or fully deuterated. [0113] In another embodiment of interest, the compounds of Formula I, Formula XX, Formula HH, or Formula XH, or a compound of Formula II below, will include at least one fused ring system in which at least one of adjacent R¹ and R², and the corresponding and R¹ and R²; the adjacent R² and R³, and the corresponding and R² and R³; or two adjacent R⁴ and the corresponding adjacent R⁴, join to form a ring of formula DY or Formula NY. Formula DY $$Z_1$$ Z_2 Z_3 Z_4 Z_3 Z_4 Z_5 Z_5 Z_5 -continued Formula NY R R R [0114] In such compounds \ast represents a connection to form the fused ring system with at least one of ring K or ring I. [0115] Y is selected from O, S, and NR^N , wherein R^N is selected from the group consisting of alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, aryl, and heteroaryl, each of which is optionally substituted; **[0116]** D is a direct bond, NR^N, CR^xR^y, SiR^xR^y, GeR^xR^y, wherein R^x and R^y are independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryl, heteroaryl, and combinations thereof, **[0117]** Z_1 , Z_2 , Z_3 , and Z_4 are independently selected from CR^Z or N, wherein each R^Z is independently hydrogen or a substituent selected from the group consisting of deuterium, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryl, heteroaryl, and combinations thereof, and [0118] R^B is selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryl, and heteroaryl, each of which is optionally substituted. [0119] For each of the above described embodiments of Formula I, Formula XX, Formula HH, or Formula XH, or a compound of Formula II below, a metal M of select interest would be selected from Ir, Rh, Os, or Re. [0120] As described above, a synthetic method to the compounds of Formula I can include a halide bridged dimer. See, e.g., compounds of Formula XX, Formula HH, or Formula XH. Of particular interest is the halide bridge compound of Formula XH, which upon a ring J addition of the halogen to form Group G, will lead to a compound of Formula II, [0121] wherein [0122] each ring K is the same, and represents a 5-membered or 6-membered heteroaryl ring and with ring J forms a 5-member cyclometallated ring; [0123] A^1 and $A^{1'}$ are the same and selected from CR^1 or N; A^2 and $A^{2'}$ are the same and selected from CR^2 or N; A^3 and $A^{3'}$ are the same and selected from CR^3 or N; each R^4 with its corresponding ring position R^4 are the same, wherein R^4 or
R^4 represent mono to the maximum allowable substitution, or no substitution, [0124] X¹ is a bridge halogen selected from the group consisting of fluorine, chlorine, bromine, and iodine; [0125] R¹, R², R³, and each R⁴ are independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; or optionally, any two adjacent groups R¹, R², R³, or any two adjacent groups R⁴, can join to form a carbocyclic ring or a heterocyclic ring, which is optionally substituted; and [0126] G is selected from the group consisting of alkyl, cycloalkyl, heteroalkyl, silyl, aryl, heteroaryl, and any combination thereof; and optionally, each of which is partially or fully substituted with deuterium. [0127] The compounds of Formula II differ from the compounds of Formula XH in that halogen on the ring K is exchanged for the Group G using well synthetic ring substitution chemistries, e.g., lithium reagents or Grignard reagents or other metal assisted substitution chemistry as described herein. **[0128]** Additional embodiments of the compounds of Formula II can also include those compounds with R^1 , R^2 , R^3 , R^4 , and R^5 , being selected from any one group list of preferred general substituents, or any one group list of more preferred substituents, defined above. For example, in one embodiment, R^1 , R^2 , R^3 , R^4 , and R^5 are independently hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof. [0129] In general, a person of skill would expect a one-pot procedure to lead to a statistical mixture of the three different distribution products (e.g., compounds 5, 6, and 7 of FIG. 3) which usually afford the target emitter with a maximum yield of about 30%. However, as described, a second synthetic pathway to the desired tris-heteroleptic compounds of Formula I can involve a one-pot synthesis beginning from the dimer compound (1) in high yield (selectivity). See, FIG. 3. As indicated, a control of olefin dimer, solvent and temperature can yield the desired tris-heteroleptic, for example, compound 6 as shown. Compound 6 can be isolated from the product mixture (i.e., compounds 5 and 7) using silica column chromatography. The described synthesis addresses the preparation in moderated yield of neutral [3b+3b'+3b"] tris-heteroleptic compounds of iridium (III) with two different orthometalated 2-phenylpyridines and a third ligand with unexpected high yield (selectivity). [0130] As noted above, in compounds of Formula I of particular interest, at least one of R^1 , R^2 , R^3 , or R^4 is a C_1 - C_6 alkyl that is partially or fully deuterated, a C_6 - C_{10} aryl, which is optionally substituted, or a C_5 - C_{13} heteroaryl, which is optionally substituted; or the adjacent R^1 and R^2 , and the corresponding and R^1 and R^2 , the adjacent R^2 and R^3 , and the corresponding and R^2 and R^3 , or two adjacent R^4 and the corresponding adjacent R^4 , join to form a ring of formula DY or Formula NY described above. **[0131]** For compounds of Formula I, the addition of a bidentate ligand L to a compound of Formula II will provide the desired tris heteroleptic compound of Formula I with octahedral or pseudo-octahedral coordination. In one embodiment, a compound of Formula I will include a ligand L_B selected from the group consisting of structure L_{B1} to L_{B2} . $$L_{B2}$$ $$L_{B4}$$ $$L_{B5}$$ $$CD_3$$ $$L_{B7}$$ $$L_{B8}$$ $$L_{B10}$$ $D_{3}C$ $$L_{B11}$$ $$L_{B12}$$ $$L_{B14}$$ CD_3 $$L_{B15}$$ $$L_{B16}$$ CD_3 , $$L_{B17}$$ $$L_{B18}$$ $$L_{B19}$$ $$L_{B20}$$ D_3C $$L_{B21}$$ $$L_{B22}$$ CD_3 , CD_3 , $$L_{B24}$$ D_3C $$L_{B26}$$ CD_3 N D_3C $$L_{B28}$$ CD_3 CD_3 , CD_3 $$L_{B29}$$ $$\mathcal{L}_{B30}$$ $$L_{B31}$$ $$D_3C$$ D_3C N $$L_{B33}$$ $$L_{B34}$$ D_3C , $$L_{B36}$$ D_3C N D_3C $$L_{B38}$$ N CD_3 $$\mathcal{L}_{B40}$$ $$L_{B41}$$ $$L_{B42}$$ D_3C $$L_{B43}$$ $$L_{B44}$$ D_3C $$L_{B45}$$ $$L_{B46}$$ $$CD_3$$, CD_3 , CD_3 $$CD_3$$ CD_3 CD_3 $$L_{B51}$$ $$L_{B52}$$ D_3C N $$L_{B54}$$ $$L_{B56}$$ D_3C N CD $$L_{B58}$$ $D_{3}C$ CD_{3} $$L_{B60}$$ D_3C D_3C $$L_{B61}$$ $$L_{B62}$$ D_3C CD_3 $$L_{B63}$$ $$L_{B64}$$ D_3C CD_3 , L_{B65} $$L_{B66}$$ $$L_{B68}$$ $D_{3}C$ CD_{3} $$L_{B70}$$ CD_3 , $$CD_3$$ CD_3 , CD_3 , $$L_{E74}$$ CD_3 , CD_3 , $$CD_3$$ CD_3 , D_3C $$L_{B78}$$ CD_3 , CD_3 , $$CD_3$$ CD_3 , CD_3 , CD_3 $$CD_3$$ CD_3 CD_3 CD_3 $$L_{B84}$$ D_3C N D_3C \mathcal{L}_{B86} \mathcal{L}_{D_3C} \mathcal{L}_{D_3C} $$D_3C$$ CD_3 , CD_3 $$L_{B90}$$ CD_3 , CD_3 $$L_{B94}$$ D_3C D_3C $$L_{B96}$$ $D_{3}C$ $D_{3}C$ $$L_{B97}$$ \mathbb{L}_{B104} -continued L_{B98} -continued $_{1}^{\mathrm{CD}_{3}}$ $$CD_3$$, CD_3 , CD_3 $$D_3C$$ D_3C D_3C $$L_{B99}$$ $$L_{B100}$$ CD_3 CD_3 CD_3 $$L_{B106}$$ D_3C D_3C $$L_{B101}$$ $$L_{B102}$$ CD_3 CD_3 CD_3 , CD_3 , $$L_{B108}$$ \mathcal{L}_{B109} -continued $$\begin{array}{c} \text{CD}_3\\ \text{D}_3\text{C}\\ \end{array}$$ $$L_{B110}$$ $$CD_3$$ CD_3 CD_3 CD_3 , $$CD_3$$ D_3C CD_3 CD_3 CD_3 \mathbb{L}_{B113} \mathcal{L}_{B122} \mathbb{L}_{B213} \mathcal{L}_{B124} -continued \mathbb{L}_{B118} -continued $$L_{B120}$$ \mathbb{L}_{B121} \mathbb{L}_{B125} \mathcal{L}_{B130} \mathbb{L}_{B126} -continued \mathcal{L}_{B127} L_{B128} -continued \mathbb{L}_{B131} \mathbb{L}_{B132} $$D_3$$ C D_3 \mathbb{L}_{B133} L_{B134} D D D N N $$L_{B136}$$ D CD_3 $$L_{B138}$$ $$L_{B140}$$ $$L_{B141}$$ $$L_{B142}$$ D_3C N CD_3 $$L_{B143}$$ $$L_{B144}$$ \mathcal{L}_{B145} L_{B146} -continued $$L_{B147}$$ \mathcal{L}_{B148} $$\begin{array}{c} D \\ \end{array}$$ \mathcal{L}_{B150} $$L_{B151}$$ \mathbb{L}_{B152} -continued \mathcal{L}_{B153} $$L_{B154}$$ \mathcal{L}_{B155} L_{B156} $$D$$ D N CD_3 $$L_{B158}$$ $D_{3}C$ N N $$L_{B160}$$ \mathcal{L}_{B165} -continued $$D_3C$$ D_3C D_3C D_3C D_3C \mathcal{L}_{B164} $$N_{N_{\infty}}$$ -continued L_{B162} \mathcal{L}_{B163} $$D_3C$$ N CD_3 L_{B167} \mathbb{L}_{B166} \mathbb{L}_{B168} $$D_3C$$ N CD_3 L_{B169} L_{B173} L_{B170} \mathbb{L}_{B174} L_{B171} $$CD_3$$ \mathcal{L}_{B175} \mathcal{L}_{B172} L_{B176} \mathbb{L}_{B181} -continued $$L_{B177}$$ L_{B178} \mathcal{L}_{B179} $$D_3C$$ N CD_3 L_{B180} -continued L_{B182} \mathbb{L}_{B183} L_{B184} $$CD_3$$ L_{B185} \mathcal{L}_{B189} D₃C N. L_{B186} \mathcal{L}_{B190} L_{B187} $$\sum_{CD_3}^{N}$$ L_{B191} $$D_3C$$ N CD_3 L_{B188} \mathbb{L}_{B192} $$L_{B194}$$ $$L_{B197}$$ $$L_{B198}$$ $$L_{B200}$$ $$L_{B202}$$ N D \mathbb{L}_{B207} L_{B208} \mathbb{L}_{B210} -continued L_{B203} L_{B204} $$D_3C$$ \mathcal{L}_{B205} \mathcal{L}_{B206} $$L_{B209}$$ $$L_{B216}$$ D_3C CD_3 $$L_{B217}$$ $$CD_3$$ L_{B218} \mathbb{L}_{B220} \mathbf{L}_{B222} -continued $$L_{B224}$$ $$L_{B225}$$ \mathbb{L}_{B230} -continued L_{B227} $$D_3C$$ \mathbb{L}_{B228} $$L_{B229}$$ D_3C N D_3C $$L_{B231}$$ CD_3 CD_3 CD_3 CD_3 CD_3 $$D_3C$$ CD_3 N CD_3 \mathbb{L}_{B233} \mathbb{L}_{B238} \mathbb{L}_{B327} \mathbb{L}_{B234} L_{B235} \mathcal{L}_{B239} \mathbb{L}_{B236} \mathbb{L}_{B240} L_{B242} -continued L_{B241} $$L_{B243}$$ $$D_3C$$ $$L_{B246}$$ $$\begin{array}{c} L_{B248} \\ \end{array}$$ \mathcal{L}_{B249} L_{B250} \mathcal{L}_{B252} -continued $$D_3C$$ D_3C CD_3 $$D$$ CD_3 -00 $$L_{B254}$$ D CD_3 N CD_3 $$D_3$$ C D_3 L_{B261} \mathbb{L}_{B262} \mathbb{L}_{B263} \mathcal{L}_{B257} -continued $$D$$ D CD_3 $$\begin{array}{c|c} D & D & CD_3 \\ \hline \end{array}$$ -continued L_{B258} $$D_3C$$ D_3C CD_3 \mathcal{L}_{B259} \mathcal{L}_{B260} [0132] In some embodiments, the ligand L_B is selected from the group consisting of; \mathbf{L}_{B2} $$\begin{array}{c} \text{CD}_3 \\ \text{N} \\ \end{array}$$ $$L_{B28}$$ $$L_{B38}$$ CD_3 $$\begin{array}{c} \text{CD}_3\\ \text{D}_3\text{C}\\ \\ \text{CD}_3\\ \end{array},$$ $$L_{B118}$$ $$L_{B122}$$ D D N N $$L_{B126}$$ D D CD_3 $$L_{B128}$$ $D_{3}C$ N , \mathbb{L}_{B138} \mathbb{L}_{B140} \mathbb{L}_{B142} \mathbb{L}_{B130} -continued L_{B132} L_{B134} \mathcal{L}_{B136} $$\begin{array}{c} D \\ D \\ D \\ \end{array}$$ D -continued $$D_3C$$ D N CD_3 $$D$$ D CD_3 L_{B144} \mathcal{L}_{B204} L_{B156} -continued L_{B158} $$D_3C$$ \mathcal{L}_{B160} $$L_{B162}$$ -continued L_{B206} L_{B214} L_{B216} $$D_3C$$ N CD_3 \mathbb{L}_{B233} L_{B218} -continued L_{B220} $$CD_3$$ N CD_3 CD_3 CD_3 \mathbb{L}_{B222} L_{B231} -continued $$CD_3$$ CD_3 N CD_3 CD_3 CD_3 CD_3 CD_3 CD₃ $\dot{C}D_3$ $$CD_3$$ $$\begin{array}{c} D \\ D \\ \end{array}$$ \mathbb{L}_{B235} L_{B237} L_{B240} L_{B242} \mathcal{L}_{B244} L_{B246} \mathbb{L}_{B248} -continued $$\begin{array}{c} D & D & CD_3 \\ \hline \end{array}$$ $$D_3C$$ D_3C CD_3 $$\bigcup_{CD_3}^{D} \bigcup_{CD_3}^{CD_3}$$ $$D_{3}C$$ $D_{3}C$ CD_{3} $$L_{B252}$$ $$D_{3}C$$ $D_{3}C$ CD_{3} L_{B258} -continued $$L_{B124}$$ \mathcal{L}_{B260} $$\begin{array}{c} D & D & CD_3 \\ \hline \\ & CD_3 \\ \end{array}$$ $$L_{B158}$$ CD_3 L_{B172} \mathbb{L}_{B175} L_{B262} $$D_3C$$ D_3C CD_3 \mathcal{L}_{B164} $$CD_3$$, [0133] In some embodiments, the ligand $L_{\it B}$ is selected
from the group consisting of; $$\mathsf{L}_{B1}$$ $$L_{B2}$$ $$L_{B18}$$ D_3C $$L_{B28}$$ $$L_{B38}$$ $$\begin{array}{c} \text{CD}_3\\ \text{D}_3\text{C}\\ \\ \text{CD}_3 \end{array}$$ $$L_{B118}$$ $$L_{B122}$$ $$L_{B126}$$ D D N CD_3 L_{B128} -continued $$D_{3}C$$ \mathbb{L}_{B132} $$D$$ D N CD_3 \mathcal{L}_{B136} $$D$$ CD_3 $$D_3$$ C D_3 \mathbb{L}_{B138} $$L_{B138}$$ $$D_{3}$$ C D \mathcal{L}_{B142} \mathbb{L}_{B156} \mathbb{L}_{B162} \mathcal{L}_{B204} $$L_{B206}$$ L_{B214} L_{B216} $$D_3C$$ $\rm L_{B218}$ $$CD_3$$ CD_3 CD_3 -continued $$L_{B220}$$ CD_3 CD_3 CD_3 \mathbb{L}_{B231} $$CD_3$$ N CD_3 \mathbb{L}_{B233} $$D_3C$$ N , and CD_3 \mathcal{L}_{B237} $$CD_3$$ [0134] In another embodiment, the addition of a bidentate ligand L_C to a compound of Formula II will provide a desired tris heteroleptic compound of Formula I that would include a ligand L_C selected from the group consisting of L_{C1-I} through L_{C768-I} with general numbering formula L_{Cj-I} (j is an integer of 1 to 768) based on a structure of and L_{C1-II} through $L_{C768-II}$ with general numbering formula L_{Cj-II} based on a structure of wherein for each L_{Cj} , \mathbb{R}^1 and \mathbb{R}^2 are defined as in Table LC. TABLE LC | | Ligand | \mathbb{R}^1 | \mathbb{R}^2 | |--|-----------------------|---------------------|---------------------|--------------------------------|-------------------|--------------------|--------------------|--------------------|--------------------|------------------------|---------------------|---------------------| | Learne | L_{C1} | \mathbb{R}^{D1} | \mathbb{R}^{D1} | L_{C193} | R^{D1} | R^{D3} | L_{C385} | R^{D17} | R^{D40} | L_{C577} | R^{D143} | \mathbf{R}^{D120} | | LG1 | L_{C2} | \mathbb{R}^{D2} | R^{D2} | | R^{D1} | R^{D4} | L _{C386} | R^{D17} | R^{D41} | L _{C578} | R^{D143} | R^{D133} | | Loss | L_{C3} | R^{D3} | R^{D3} | L_{C195} | R^{D1} | R^{D5} | L_{C387} | R^{D17} | R^{D42} | L_{C579} | | | | Loss | L_{C4} | R^{D4} | R^{D4} | L_{C196} | R^{D1} | R^{D9} | L_{C388} | R^{D17} | R^{D43} | L _{C580} | | | | Leg | L_{C5} | R^{DS} | R^{DS} | L_{C197} | R^{D1} | R^{D10} | L_{C389} | R^{D17} | R^{D48} | L _{C581} | R^{D143} | R^{D136} | | | L_{C6} | R ^{D6} | R ^{D6} | L_{C198} | R^{D1} | R ^{D17} | L_{C390} | R ^{D17} | R ^{D49} | L _{C582} | RD143 | R ^{D144} | | Longorn Ref | L _{C7} | RD7 | RD7 | L _{C199} | R^{D_1} | RD10 | L _{C391} | RD17 | RD50 | L _{C583} | RD143 | RD145 | | LC10 | L _{C8} | D D9 | D^{D9} | L _{C200} | nD1 | DD22 | L _{C392} | DD17 | DD55 | L _{C584} | | | | LC11 | L _{C9} | D^{D10} | D^{D10} | L _{C201} | D^{D1} | D^{D37} | L _{C393} | DD17 | D^{D58} | L _{C585} | DD143 | DD149 | | LC12 | L _C 10 | RD11 | R^{D11} | L _C 202 | pD1 | RD40 | L _C 394 | RD17 | R^{D59} | L _C 586 | RD143 | RD151 | | LC13 | L _{C11} | \mathbb{R}^{D12} | \mathbb{R}^{D12} | L.coo. | \mathbb{R}^{D1} | R^{D41} | L.c395 | R^{D17} | DD78 | L.C587 | R ^{D143} | R^{D154} | | | Len | DD13 | \mathbb{R}^{D13} | L. C204 | \mathbb{R}^{D1} | \mathbf{R}^{D42} | L. C20.7 | DD17 | \mathbb{R}^{D79} | L.C500 | D^{D143} | R^{D155} | | | LCM | \mathbb{R}^{D14} | R^{D14} | L C206 | \mathbb{R}^{D1} | R^{D43} | LC209 | R^{D17} | R^{D81} | L _{C500} | R^{D143} | R^{D161} | | LC16 R R R R R R R R R R | L _{C15} | \mathbb{R}^{D15} | R^{D15} | L _{C207} | \mathbb{R}^{D1} | R^{D48} | L _{C300} | pD17 | \mathbb{R}^{D87} | L _{C591} | pD143 | pD175 | | L_C17 | L_{C16} | DD16 | DD16 | L _{C208} | \mathbf{p}^{D1} | \mathbf{p}^{D49} | L_{C400} | pD17 | D^{D88} | L _{C592} | DD144 | DD3 | | LC18 | L_{C17} | \mathbf{p}^{D17} | R^{D17} | L _{C209} | \mathbf{p}^{D1} | R^{D50} | L _{C401} | D^{D17} | R^{D89} | L_{C593} | R^{D144} | \mathbb{R}^{D5} | | L_C_10 | L_{C18} | \mathbb{R}^{D18} | R^{D18} | L_{C210} | \mathbb{R}^{D1} | R^{D54} | L_{C402} | R^{D17} | R^{D93} | L_{C594} | R^{D144} | R^{D17} | | | \mathcal{L}_{C19} | R^{D19} | R^{D19} | L _{C211} | R^{D1} | R^{D55} | L_{C403} | R^{D17} | R ^{D116} | L _{C595} | R^{D144} | R^{D18} | | LC21 | L _{C20} | R^{D20} | R^{D20} | L _{C212} | R^{D_1} | R^{D58} | L _{C404} | R^{D17} | R^{D117} | L_{C596} | R^{D144} | R^{D20} | | L_C23 | L _{C21} | R ^{D21} | R ^{D21} | L _{C213} | R^{D_1} | R ^{D39} | L _{C405} | R ^{D17} | R ^{D110} | L _{C597} | R ^{D144} | R ^{D22} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C22} | RD22 | RD22 | L _{C214} | R ^{D1} | RD70 | L _{C406} | RD17 | RD119 | L _{C598} | RD144 | RD40 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C23} | RD24 | DD24 | L _{C215} | nDI | n/281 | L _{C407} | DD17 | nD133 | L _{C599} | n D144 | RD41 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C24} | D.D25 | DD25 | L _{C216} | D^{D1} | DD87 | L _{C408} | DD17 | DD134 | L _{C600} | DD144 | DD42 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C25} | D D26 | D^{D26} | L _{C217} | D^{D1} | D^{D88} | L _{C409} | DD17 | DD135 | L _{C601} | DD144 | DD43 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C26}
Т | ъ
р. <i>D</i> 27 | ъ
р.D27 | ^L <i>C</i> 218
Т | \mathbf{p}^{D1} | DD89 | <i>∟С</i> 410
Т | р <i>D</i> 17 | pD136 | ⊥ _{С602}
т | p.D144 | DD48 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C27} | D^{D28} | \mathbb{R}^{D28} | L _{C219} | \mathbb{R}^{D1} | R^{D93} | LC411 | pD17 | R^{D143} | I | DD144 | D^{D49} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C28} | D^{D29} | \mathbb{R}^{D29} | L _{C220} | \mathbb{R}^{D1} | R^{D116} | L _{C412} | DD17 | R^{D144} | | R^{D144} | R^{D54} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C20} | \mathbb{R}^{D30} | R^{D30} | Lczz | \mathbb{R}^{D1} | R^{D117} | L _{C414} | \mathbb{R}^{D17} | R^{D145} | | R^{D144} | R^{D58} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | LGI | R^{D31} | R^{D31} | L _{C223} | \mathbb{R}^{D1} | R^{D118} | L _{C415} | R^{D17} | R^{D146} | L _{C607} | R^{D144} | \mathbb{R}^{D59} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L_{C32} | \mathbb{R}^{D32} | R^{D32} | L _{C224} | \mathbb{R}^{D1} | R^{D119} | Louis | R^{D17} | R^{D147} | L _{C608} | R^{D144} | R^{D78} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C33} | R^{D33} | R^{D33} | L _{C225} | R^{D1} | | L_{C417} | R^{D17} | R^{D149} | L _{C609} | R^{D144} | R^{D79} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L_{C34} | R^{D34} | R^{D34} | L _{C226} | \mathbb{R}^{D1} | R^{D133} | L_{C418} | R^{D17} | R^{D151} | L_{C610} | R^{D144} | R^{D81} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C35} | R^{D35} | R^{D35} | L _{C227} | R^{D1} | R^{D134} | L_{C419} | R^{D17} | R^{D154} | L _{C611} | R^{D144} | $R^{D8/}$ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C36} | RD36 | R ^{D36} | L _{C228} | R^{D1} | RD135 | L _{C420} | R^{D17} | R ^{D155} | L _{C612} | R ^{D144} | R ^{D88} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C37} | R ^{D37} | R ^{D37} | L _{C229} | R ^{D1} | RD130 | | R ^{D17} | RD175 | L _{C613} | RD144 | R ^{D03} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C38} | R D39 | RD39 | L _{C230} | RDI | RD143 | L _{C422} | RD17 | RD175 | L _{C614} | RD144 | RD116 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C39} | n D40 | nD40 | L _{C231} | nD1 | nD145 | L _{C423} | nD50 | nD5 | L _{C615} | nD144 | nD117 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C40} | К
р.D41 | К.
р <i>D</i> 41 | L _{C232} | D^{D1} | DD146 | L _{C424} | D D50 | D^{D18} | L _{C616} | К
р <i>D</i> 144 | DD118 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | LC41
I | RD42 | RD42 | L _{C233} | R^{D1} | RD147 | L _{C425} | RD50 | R^{D20} | L _{C617} | RD144 | RD119 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C42} | pD43 | R^{D43} | LC234 | \mathbb{R}^{D1} | RD149 | LC426 | pD50 | \mathbb{R}^{D22} | L_C618 | pD144 | pD120 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C44} | R^{D44} | R^{D44} | L.c.235 | \mathbb{R}^{D1} | R^{D151} | L _{C429} | R^{D50} | \mathbb{R}^{D37} | L.cc20 | R^{D144} | R^{D133} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C45} | R^{D45} | R^{D45} | LC237 | \mathbb{R}^{D1} | R^{D154} | L _{C420} | R^{D50} | R^{D40} | L _{C621} | R^{D144} | R^{D134} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C46} | R^{D46} | R^{D46} | L _{C238} | R^{D1} | | L _{C430} | R^{D50} | R^{D41} | L _{C622} | R^{D144} | R^{D135} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L_{C47} | R^{D47} | R^{D47} | L _{C239} | \mathbb{R}^{D1} | R^{D161} | L _{C431} | R^{D50} | R^{D42} | L _{C623} | R^{D144} | R^{D136} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L_{C48} | R^{D48} | R^{D48} | L _{C240} | \mathbb{R}^{D1} | R^{D175} | L _{C432} | R^{D50} | R^{D43} | L _{C624} | R^{D144} | R^{D145} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L_{C49} | R^{D49} | R^{D49} | L _{C241} | \mathbb{R}^{D4} | R^{D3} | L_{C433} | R^{D50} | R^{D48} | L _{C625} | R^{D144} | R^{D146} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L_{C50} | R^{D50} | R^{D50} | L _{C242} | R^{D4} |
R^{D5} | L_{C434} | R^{D50} | R^{D49} | L _{C626} | R^{D144} | R^{D147} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C51} | R^{D51} | R^{D51} | L _{C243} | R^{D4} | R^{D9} | L _{C435} | R^{D50} | R^{D54} | L _{C627} | R^{D144} | R^{D149} | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L _{C52} | R^{D52} | R^{D52} | L _{C244} | R^{D4} | R^{D10}_{-D17} | L_{C436} | R ^{D50} | R ^{D55} | L _{C628} | R^{D144} | R ^{D151} | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | L _{C53} | R ^{D53} | R ^{D53} | L_{C245} | R^{D4} | RD1/ | L_{C437} | R ^{D50} | RD50 | L _{C629} | RD144 | RD154 | | | L _{C54} | RD54 | RD54 | L _{C246} | R D4 | R ^{D20} | L _{C438} | RD50 | RD78 | L _{C630} | RD144 | RD161 | | | | R255 | R255 | L _{C247} | R D4 | | L _{C439} | R250 | RD70 | L _{C631} | R D144 | RD175 | | L_{CS7} R^{DS7} R^{DS7} L_{C249} R^{DS7} L_{C441} R^{DS7} R^{DS1} L_{C633} R^{D145} R^{D5} | | RD57 | RD57 | L _{C248} | R ^{D4} | | L _{C440} | RD50 | RD/9 | L _{C632} | RD145 | K ^{D173} | | | L _{C57} | K ²³ | K ²³ | L _{C249} | K | K ²³ | L _{C441} | K | K | L _{C633} | K | K | TABLE Lc-continued | | | | | | | c-conur | | | | | | |---|-----------------------------------|--|--|-------------------|---|--|---|---|--|--------------------------|--| | Ligand | R ¹ | R ² | Ligand | R ¹ | \mathbb{R}^2 | Ligand | R ¹ | R ² | Ligand | R ¹ | R ² | | L _{C58} | R ^{D58} | R^{D58} | L _{C250} | R^{D4} | R^{D40} | L _{C442} | R ^{D50} | R ^{D87} | L _{C634} | R ^{D145} | R ^{D5} | | L_{C59} | ${\rm R}^{D59}\atop{\rm R}^{D60}$ | R^{D59} R^{D60} | L _{C251} | R^{D4} R^{D4} | R^{D41} R^{D42} | L _{C443} | R^{D50} R^{D50} | R^{D88} R^{D89} | L _{C635} | R^{D145} R^{D145} | R^{D17} R^{D18} | | L_{C60}
L_{C61} | DD61 | \mathbb{R}^{D61} | L_{C252}
L_{C253} | \mathbf{R}^{D4} | D^{D43} | L _{C444}
L _{C445} | D^{D50} | R^{D93} | L_{C636}
L_{C637} | R^{D145} | R^{D20} | | L _{C62} | R^{D62} | R^{D62} | L_{C254} | R^{D4} | R^{D48} | L _{C446} | R^{D50} | R^{D116} | L_{C638} | R^{D145} | \mathbb{R}^{D22} | | L_{C63} | \mathbb{R}^{D63} | R ^{D63} | L_{C255} | R^{D4} | $\begin{array}{c} R^{D49} \\ R^{D50} \end{array}$ | L _{C447} | R^{D50} | R ^{D117} | L_{C639} | R^{D145} R^{D145} | R ^{D37} | | L _{C64} | R^{D64} R^{D65} | R^{D64} R^{D65} | L _{C256} | R^{D4} R^{D4} | R^{D50} R^{D54} | L _{C448} | R^{D50} R^{D50} | \mathbf{R}^{D118} \mathbf{R}^{D119} | L _{C640} | R^{D145} R^{D145} | R^{D40} R^{D41} | | L_{C65}
L_{C66} | R^{D66} | R^{D66} | L _{C257}
L _{C258} | R^{D4} | R^{D55} | $L_{C449} \\ L_{C450}$ | \mathbb{R}^{D50} | R^{D120} | $\rm L_{C641} \\ L_{C642}$ | R^{D145} | R^{D42} | | L _{C67} | R^{D67} | R^{D67} | L_{C259} | R^{D4} | R^{D58} | L_{C451} | R^{D50} | R^{D133} | L_{C643} | R^{D145} | R^{D43} | | L _{C68} | R^{D68} R^{D69} | R^{D68} R^{D69} | L _{C260} | R^{D4} R^{D4} | \mathbf{R}^{D59} \mathbf{R}^{D78} | L_{C452} | R^{D50} R^{D50} | R^{D134}
R^{D135} | L _{C644} | R^{D145} R^{D145} | R^{D48} R^{D49} | | L_{C69} | R^{D09} R^{D70} | R^{D09} R^{D70} | L _{C261} | R^{D4} R^{D4} | R^{D79} R^{D79} | L _{C453} | R^{D50} R^{D50} | R^{D136} | L _{C645} | R^{D145} R^{D145} | R^{D49} R^{D54} | | L _{C70}
L _{C71} | R^{D71} | R^{D71} | L_{C262}
L_{C263} | R^{D4} | R^{D81} | $L_{C454} \\ L_{C455}$ | R^{D50} | R^{D143} | L_{C646}
L_{C647} | R^{D145} | R^{D58} | | L_{C72} | \mathbf{p}^{D72} | R^{D72} | L _{C264} | R^{D4} | \mathbf{p}^{D87} | L _{C456} | \mathbb{R}^{D50} | R^{D144} | L_{C648} | pD145 | \mathbb{R}^{D59} | | L_{C73} | R^{D73} R^{D74} | R^{D73} R^{D74} | L _{C265} | R^{D4} R^{D4} | R^{D88} R^{D89} | L_{C457} | $\begin{array}{c} R^{D50} \\ R^{D50} \end{array}$ | \mathbf{R}^{D145} \mathbf{R}^{D146} | L_{C649} | R^{D145} R^{D145} | R^{D78} R^{D79} | | L _{C74} | R^{D75} | R^{D75} | L _{C266} | R^{D4} | R^{D93} | L _{C458} | R^{D50} | R^{D147} | L _{C650} | R^{D145} | R^{D81} | | L_{C75}
L_{C76} | R^{D76} | R^{D76} | L _{C267}
L _{C268} | R^{D4} | R^{D116} | $L_{C459} \\ L_{C460}$ | R^{D50} | R^{D149} | $\rm L_{C651} \\ L_{C652}$ | R^{D145} | R^{D87} | | L _{C77} | \mathbb{R}^{D77} | \mathbb{R}^{D77} | L _{C269} | R^{D4} | R^{D117} | L_{C461} | \mathbb{R}^{D50} | R^{D151} | L_{C653} | p^{D145} | \mathbf{p}^{D88} | | L_{C78} | R^{D78} | R^{D78} | L _{C270} | R^{D4} | R ^{D118} | L _{C462} | R^{D50} | R ^{D154} | L _{C654} | R ^{D145} | R ^{D89} | | L _{C79} | R^{D79} R^{D80} | R^{D79} R^{D80} | L _{C271} | R^{D4} R^{D4} | \mathbf{R}^{D119} \mathbf{R}^{D120} | L_{C463} | R^{D50} R^{D50} | \mathbf{R}^{D155} \mathbf{R}^{D161} | L_{C655} | R^{D145}
R^{D145} | R^{D93}
R^{D116} | | L_{C80}
L_{C81} | R^{D81} | R^{D81} | L _{C272}
L _{C273} | R^{D4} | R^{D133} | $L_{C464} \\ L_{C465}$ | \mathbb{R}^{D50} | R^{D175} | L_{C656}
L_{C657} | R^{D145} | R^{D117} | | L _{C82} | \mathbf{p}^{D82} | R^{D82} | L _{C274} | R^{D4} | R^{D134} | L _{C466} | R^{D55} | \mathbb{R}^{D3} | L_{C658} | R^{D145} | R^{D118} | | L _{C83} | pD83 | R^{D83} | L _{C275} | R^{D4} | R ^{D135} | L _{C467} | R^{D55} | R^{D5} | L_{C659} | R ^{D145} | R^{D119} | | L _{C84} | R^{D84} R^{D85} | R^{D84} R^{D85} | L _{C276} | R^{D4} R^{D4} | R^{D136} R^{D143} | L _{C468} | R^{D55} R^{D55} | $R^{D18} \\ R^{D20}$ | L _{C660} | R^{D145} R^{D145} | $\mathbf{R}^{D120}\\\mathbf{R}^{D133}$ | | L_{C85}
L_{C86} | pD86 | R^{D86} | L _{C277}
L _{C278} | R^{D4} | R^{D144} | ${\rm L}_{C469} \ {\rm L}_{C470}$ | \mathbb{R}^{D55} | \mathbb{R}^{D22} | L_{C661}
L_{C662} | R^{D145} | R^{D134} | | L _{C87} | R^{D87} | \mathbb{R}^{D87} | L _{C279} | R^{D4} | R^{D145} | T | R^{D55} | R^{D37} | L _{C663} | R^{D145} | R^{D135} | | L _{C88} | D^{D88} | R^{D88} | L _{C280} | p^{D4} | R ^{D146} | L_{C472} | R^{D55} | R^{D40} | L_{C664} | R ^{D145} | R^{D136} | | L _{C89} | R^{D89} R^{D90} | R^{D89} R^{D90} | L _{C281} | R^{D4} R^{D4} | $\begin{array}{c} R^{D147} \\ R^{D149} \end{array}$ | L_{C473} | R^{D55} R^{D55} | $\begin{array}{c} R^{D41} \\ R^{D42} \end{array}$ | L_{C665} | R^{D145} R^{D145} | R^{D146} R^{D147} | | L _{C90}
L _{C91} | \mathbb{R}^{D91} | \mathbb{R}^{D91} | L _{C282}
L _{C283} | \mathbb{R}^{D4} | R^{D151} | $L_{C474} \\ L_{C475}$ | R^{D55} | R^{D43} | L _{C666}
L _{C667} | R^{D145} | R^{D149} | | L _{C92} | D^{D92} | \mathbb{R}^{D92} | L _{C284} | R^{D4} | R^{D154} | L _{C476} | \mathbb{R}^{D55} | R^{D48} | L _{C668} | D^{D145} | D^{D151} | | L_{C93} | \mathbb{R}^{D93} | R^{D93} | L _{C285} | R^{D4} | R^{D155} | L_{C477} | R^{D55} | R^{D49} | L _{C669} | R ^{D145} | R^{D154} | | L_{C94} | R^{D94} R^{D95} | $\begin{array}{c} R^{D94} \\ R^{D95} \end{array}$ | L _{C286} | R^{D4} R^{D4} | R^{D161}
R^{D175} | L_{C478} | R^{D55} R^{D55} | $\begin{array}{c} R^{D54} \\ R^{D58} \end{array}$ | L_{C670} | RD145 | R^{D155}
R^{D161} | | L _{C95}
L _{C96} | p^{D96} | R^{D96} | L _{C287} | R^{D9} | \mathbf{p}^{D3} | 0475 | \mathbb{R}^{D55} | R^{D59} | \mathcal{L}_{C671}
\mathcal{L}_{C672} | R^{D145} | R^{D175} | | L _{C97} | \mathbb{R}^{D97} | R^{D97} | L _{C288}
L _{C289} | R^{D9} | \mathbb{R}^{D5} | L _{C480}
L _{C481} | \mathbb{R}^{D55} | R^{D78} | L _{C673} | R^{D146} | R^{D3} | | L_{C98} | R^{D98} | R^{D98} | L _{C290} | R^{D9} | R^{D10} | L_{C482} | R^{D55} | R^{D79} | L _{C674} | R^{D146} | R^{D5} | | L _{C99} | R^{D99} R^{D100} | $\begin{array}{c} R^{D99} \\ R^{D100} \end{array}$ | L_{C291} | R^{D9} R^{D9} | \mathbf{R}^{D17} \mathbf{R}^{D18} | L_{C483} | R^{D55} R^{D55} | R^{D81} R^{D87} | L _{C675} | R^{D146} R^{D146} | | | L _{C100} | \mathbf{R}^{D101} | \mathbf{R}^{D101} | L _{C292}
L _{C293} | R^{D9} | R^{D20} | L _{C484} | \mathbb{R}^{D55} | R^{D88} | L _{C676} | R ^{D146} | R^{D20} | | \mathcal{L}_{C101} \mathcal{L}_{C102} | R^{D102} | R^{D102} | L~201 | R^{D9} | \mathbb{R}^{D22} | ${\rm L}_{C485} \ {\rm L}_{C486}$ | \mathbb{R}^{D55} | R^{D89} | $L_{C677} \\ L_{C678}$ | R ^{D146} | R^{D22} | | L_{C103} | R^{D103} | R^{D103} | L_{C295} | \mathbb{R}^{D9} | R^{D37} | L _{C487} | \mathbb{R}^{D55} | R^{D93} | L_{C679} | R^{D146} | R^{D37} | | L_{C104} | R ^{D104} | R ^{D104} | | R^{D9} | R^{D40} R^{D41} | L_{C488} | R^{D55} R^{D55} | \mathbf{R}^{D116} \mathbf{R}^{D117} | L_{C680} | R^{D146}
R^{D146} | R^{D40} | | L_{C105} | RD103 | R^{D105} R^{D106} | L _{C297} | R^{D9} R^{D9} | R^{D41} R^{D42} | L _{C489} | pD55 | R^{D118} | L _{C681} | R^{D146} | RD41
pD42 | | L _{C106}
L _{C107} | R^{D107} | R^{D107} | I | R^{D9} | R^{D43} | L_{C490}
L_{C491} | R^{D55} | R^{D119} | I | R^{D146} | R^{D43} | | L _{C108} | R^{D108} | R^{D108} | T | R^{D9} | R^{D48} | L_{C492} | R^{D55} | R^{D120} | Local | R^{D146} | R^{D48} | | L_{C109} | R^{D109} |
R^{D109} | Long | R^{D9} | $\begin{array}{c} R^{D49} \\ R^{D50} \end{array}$ | L_{C493} | R^{D55} R^{D55} | R^{D133} | Locas | R ^{D146} | | | L _{C110} | \mathbb{R}^{D111} | \mathbf{R}^{D110} \mathbf{R}^{D111} | I | R^{D9} R^{D9} | R^{D54} | L _{C494} | D^{D55} | R^{D134} R^{D135} | L _{C686}
L _{C687} | R^{D146}
R^{D146} | R ^{D54}
R ^{D58} | | L_{C111}
L_{C112} | \mathbb{R}^{D112} | \mathbf{R}^{D112} | I | R^{D9} | R^{D55} | L _{C495}
L _{C496} | R^{D55} | R^{D136} | I | R^{D146} | R^{D59} | | L_{C113} | \mathbb{R}^{D113} | \mathbb{R}^{D113} | T | \mathbb{R}^{D9} | R^{D58} | L_{C497} | R^{D55} | R^{D143} | L_{C689} | R^{D146} | R^{D78} | | L_{C114} | R^{D114} | R^{D114} | T | R^{D9} R^{D9} | \mathbf{R}^{D59} \mathbf{R}^{D78} | L_{C498} | R^{D55} R^{D55} | R^{D144} | L_{C690} | R^{D146}
R^{D146} | R^{D79} | | L _{C115} | RD116 | R^{D115} R^{D116} | L _{C307} | R^{D9} R^{D9} | \mathbb{R}^{D79} | L _{C499} | \mathbb{R}^{D55} | | $\rm L_{C691} \\ L_{C692}$ | R ^{D146} | R ^{D87} | | \mathcal{L}_{C116} \mathcal{L}_{C117} | R^{D117} | R^{D117} | T | \mathbf{p}^{D9} | R^{D81} | L _{C500}
L _{C501} | \mathbf{p}^{D55} | R^{D147} | L_{C693} | R^{D146} | R^{D88} | | L _{C118} | R^{D118} | \mathbb{R}^{D118} | T | R^{D9} | R^{D87} | L _{C502} | R^{D55} | R^{D149} | L _{C694} | R^{D146} | R^{D89} | | L_{C119} | R^{D119} | R^{D119} | I | R^{D9} | R ^{D88} | L _{C503} | R ^{D55} | R ^{D151} | L_{C695} | R ^{D146} | | | L _{C120} | RD120 | \mathbf{R}^{D120} \mathbf{R}^{D121} | L _{C312} | R^{D9} R^{D9} | R^{D89} R^{D93} | L _{C504} | R^{D55} R^{D55} | \mathbf{R}^{D154} \mathbf{R}^{D155} | L _{C696} | | R^{D117} R^{D118} | | L_{C121} L_{C122} | R^{D122} | \mathbf{R}^{D122} | T | \mathbb{R}^{D9} | R^{D116} | L _{C505}
L _{C506} | R^{D55} | R^{D161} | ${\rm L}_{C697} \ {\rm L}_{C698}$ | | R^{D119} | | L_{C123} | R^{D123} | \mathbb{R}^{D123} | I | R^{D9} | R^{D117} | L _{C507} | R^{D55} | R^{D175} | L _{C699} | R^{D146} | R^{D120} | | L_{C124} | R^{D124} | R^{D124} | I | R^{D9} | R ^{D118} | L _{C508} | R^{D116} | | L _{C700} | R ^{D146} | R^{D133} | | L_{C125} | R ^{D125}
pD126 | R^{D125} R^{D126} | L _{C317} | R^{D9} R^{D9} | R^{D119} R^{D120} | L_{C509} | R^{D116}
R^{D116} | | L _{C701} | | R^{D134} R^{D135} | | \mathcal{L}_{C126} \mathcal{L}_{C127} | R^{D127} | R^{D127} | I | R^{D9} | \mathbb{R}^{D133} | I | R^{D116} | | ${\rm L}_{C702} \\ {\rm L}_{C703}$ | R^{D146} | R^{D136} | | L_{C127}
L_{C128} | R^{D128} | \mathbb{R}^{D128} | I | \mathbb{R}^{D9} | R^{D134} | Lessa | R^{D116} | R^{D20} | L _{C703}
L _{C704} | R^{D146} | R^{D146} | | L_{C129} | \mathbb{R}^{D129} | \mathbf{p}^{D129} | T | \mathbb{R}^{D9} | \mathbb{R}^{D135} | I | R ^{D116} | | L _{C705} | | R^{D147} | | L_{C130} | R^{D130} | R^{D130} R^{D131} | L _{C322} | R^{D9} R^{D9} | RD136 | L _{C514} | R^{D116}
R^{D116} | | L _{C706} | | R^{D149}
R^{D151} | | L _{C131} | RD132 | R^{D131} R^{D132} | L _{C323} | R^{D9} R^{D9} | RD144 | L _{C515}
L _{C516} | R^{D116} R^{D116} | | L _{C707} | | R^{D151} R^{D154} | | L_{C132} | IX | IX. | ¹ -C324 | IX | IX. | ^L C516 | IV. | IX. | \mathcal{L}_{C708} | K | K | TABLE Lc-continued | Ligand | R ¹ | R ² | Ligand | R ¹ | R ² | Ligand | R ¹ | \mathbb{R}^2 | Ligand | R ¹ | R ² | |--------------------------|-------------------|-----------------------|---------------------|---------------------------------------|--------------------|--|--------------------------|-------------------|--|--------------------------|------------------| | L_{C133} | R^{D133} | R^{D133} | L _{C325} | R^{D9} | R^{D145} | L _{C517} | R^{D116} | R^{D42} | L _{C709} | | R^{D155} | | L_{C134} | R^{D134} | R^{D134} | L_{C326} | R^{D9} | R^{D146} | L _{C518} | R^{D116} | | L_{C710} | | R^{D161} | | L_{C135} | R^{D135} | R^{D135} | L _{C327} | R^{D9} | R^{D147} | - 6219 | R ^{D116} | | L_{C711} | | R^{D175} | | L_{C136} | R^{D136} | R^{D136} | L_{C328} | R^{D9} | R ^{D149} | L _{C520} | R^{D116} | R^{D49} | L _{C712} | R^{D133} | | | L_{C137} | R ^{D137} | R ^{D137} | L_{C329} | R^{D9} | R^{D151} | L_{C521} | R ^{D116} | | L_{C713} | R^{D133} | | | L_{C138} | R^{D138} | R^{D138} | L_{C330} | R^{D9} | R^{D154} | L _{C522} | R ^{D116} | | L _{C714} | R^{D133} | | | \mathcal{L}_{C139} | RD139 | R^{D139} | L _{C331} | R^{D9} | R^{D155} | C323 | R ^{D116} | R ^{D39} | L_{C715} | R^{D133} | R ^{D18} | | L _{C140} | RD140 | R ^{D140} | L _{C332} | R^{D9} | R ^{D161} | LC524 | R ^{D116} | | L _{C716} | R^{D133} | | | L_{C141} | RD141 | R ^{D141} | L _{C333} | R^{D9} R^{D10} | R^{D175} | 0323 | R ^{D116} | | L _{C717} | R ^{D133} | | | L _{C142} | RD142 | R^{D142} | L _{C334} | R^{D10} R^{D10} | R^{D3} | L _{C526} | R ^{D116} | | L _{C718} | R^{D133} | | | L _{C143} | RD143 | R ^{D143} | L _{C335} | R^{D10} | R^{D5} R^{D17} | L _{C527} | R^{D116} R^{D116} | | L _{C719} | R^{D133}
R^{D133} | | | L _{C144} | RD145 | R^{D144} R^{D145} | L _{C336} | R^{D10} | R^{D18} | L _{C528} | R^{D116} | | L_{C720} | R^{D133} | | | L_{C145} | nD146 | R^{D146} | L _{C337} | R^{D10} | R^{D20} | L _{C529} | R ^{D116} | | L _{C721} | R ^{D133} | | | L _{C146} | nD147 | R^{D147} | L _{C338} | R^{D10} | R^{D22} | L _{C530} | | R^{D117} | L _{C722} | R^{D133} | | | L _{C147} | DD148 | R^{D148} | L _{C339} | R^{D10} | R^{D37} | L _{C531} | | R^{D118} | L_{C723} | R^{D133} | | | L _{C148} | DD149 | R^{D149} | L _{C340} | R^{D10} | R^{D40} | L _{C532} | DD116 | R^{D119} | L _{C724} | R^{D133} | | | L _{C149} | DD150 | R^{D150} | L _{C341} | R^{D10} | R^{D41} | L_{C533} | | R^{D120} | L _{C725} | R^{D133} | | | L _{C150} | DD151 | R^{D151} | L-C342 | R^{D10} | R^{D42} | L _{C534} | | R^{D133} | | R^{D133} | DD59 | | L _{C151} | DD152 | R^{D152} | L _{C343} | R^{D10} | R^{D43} | L _{C535} | DD116 | R^{D134} | L _{C727} | R^{D133} | R^{D78} | | L _{C152} | RD153 | R^{D153} | L _{C344} | R^{D10} | R^{D48} | L _{C536} | RD116 | R^{D135} | L _{C728} | R^{D133} | | | L_{C153} L_{C154} | RD154 | R^{D154} | L-C345 | R^{D10} | R^{D49} | L _{C537}
L _{C538} | RD116 | R^{D136} | L _{C729} | R^{D133} | | | L_{C154} | RD155 | R^{D155} | L | R^{D10} | R^{D50} | L _{C539} | R^{D116} | R^{D143} | I | R^{D133} | R^{D87} | | L_{C156} | R^{D156} | R^{D156} | I | R^{D10} | R^{D54} | L _{C540} | R^{D116} | R^{D144} | I | R^{D133} | R^{D88} | | L_{C156}
L_{C157} | R^{D157} | R^{D157} | I | R^{D10} | R^{D55} | L _{C541} | R^{D116} | R^{D145} | I | R^{D133} | | | L_{C158} | R^{D158} | R^{D158} | Longo | R^{D10} | R^{D58} | L _{C542} | R^{D116} | R^{D146} | Lorga | R^{D133} | R^{D93} | | L _{C159} | R^{D159} | R^{D159} | Loss | \mathbb{R}^{D10} | R^{D59} | L _{C543} | R ^{D116} | R^{D147} | L. C735 | | R^{D117} | | L _{C160} | R^{D160} | R^{D160} | Long | R^{D10} | R^{D78} | L _{C544} | R^{D116} | R^{D149} | L _{C736} | | R^{D118} | | L_{C161} | R^{D161} | R^{D161} | Lones | R^{D10} | R^{D79} | L _{C545} | | R^{D151} | L~727 | | R^{D119} | | L_{C162} | R^{D162} | \mathbb{R}^{D162} | I | \mathbb{R}^{D10} | R^{D81} | L _{C546} | R^{D116} | R^{D154} | I | R^{D133} | R^{D120} | | L_{C163} | R^{D163} | R^{D163} | Longe | R^{D10} | R^{D87} | L _{C547} | R^{D116} | R^{D155} | L | | R^{D133} | | L_{C164} | R^{D164} | R^{D164} | Longe | R^{D10} | R^{D88} | L _{C548} | R^{D116} | R^{D161} | I | | R^{D134} | | L_{C165} | R^{D165} | R^{D165} | Long | R^{D10} | ${\rm R}^{D89}$ | L _{C549} | R^{D116} | R^{D175} | L_{C741} | | R^{D135} | | L_{C166} | R^{D166} | R^{D166} | I | R^{D10} | R^{D93} | L_{C550} | R^{D143} | \mathbb{R}^{D3} | L_{C742} | R^{D133} | R^{D136} | | L_{C167} | R^{D167} | R^{D167} | I | R^{D10} | R^{D116} | L_{C551} | R^{D143} | R^{D5} | L_{C743} | R^{D133} | | | L_{C168} | R^{D168} | R^{D168} | Longo | R^{D10} | R^{D117} | L_{C552} | R^{D143} | R^{D17} | \mathcal{L}_{C744} | | R^{D147} | | L_{C169} | R^{D169} | R^{D169} | I | R^{D10} | R^{D118} | L _{C553} | R^{D143} | R^{D18} | L_{C745} | R^{D133} | R^{D149} | | L_{C170} | R^{D170} | R^{D170} | L _{C362} | R^{D10} | R^{D119} | L_{C554} | R^{D143} | R^{D20} | L _{C746} | | R^{D151} | | L_{C171} | R^{D171} | R^{D171} | L_{C363} | R^{D10} | R^{D120} | L_{C555} | R^{D143} | R^{D22} | L _{C747} | R^{D133} | R^{D154} | | L_{C172} | $R^{D1/2}$ | R^{D172} | L _{C364} | R^{D10} | R^{D133} | 1.0556 | R^{D143} | R^{D37} | L _{C748} | R^{D133} | R^{D155} | | L_{C173} | $R^{D1/3}$ | R^{D173} | L_{C365} | R^{D10} | R ^{D134} | I. cc. c = | R^{D143} | R^{D40} | L _{C749} | R^{D133} | R^{D161} | | L_{C174} | RD174 | R ^{D174} | L _{C366} | R^{D10} | RD133 | L _{C558} | R^{D143} | R^{D41} | L_{C750} | R^{D133} | R^{D175} | | L_{C175} | RD175 | R ^{D175} | L _{C367} | R^{D10} | R ^{D130} | L _{C559} | R^{D143} | R ^{D42} | L _{C751} | R ^{D175} | | | L_{C176} | RD177 | R ^{D176} | L _{C368} | \mathbf{R}^{D10} \mathbf{R}^{D10} | R ^{D143} | L_{C560} | | R^{D43} | L _{C752} | R^{D175}
R^{D175} | RD18 | | L _{C177} | RD178 | R ^{D177} | L _{C369} | R^{D10} | R ^{D144} | L _{C561} |
R^{D143}
R^{D143} | | L _{C753} | R^{D175} | | | L _{C178} | RD170 | R^{D178} R^{D179} | L _{C370} | R^{D10} | RD146 | L _{C562} | R^{D143} | R^{D54} | L _{C754} | R^{D175} | RD20 | | L_{C179} | RD180 | R^{D180} | L _{C371} | R^{D10} | RD147 | L _{C563}
L _{C564} | R^{D143} | RD58 | L _{C755} | R ^{D175} | RD37 | | L _{C180} | nD181 | R^{D181} | L _{C372} | R^{D10} | DD149 | L _{C564}
L _{C565} | R^{D143} | | L _{C756} | R^{D175} | | | L _{C181} | nD182 | R^{D182} | L _{C373} | R^{D10} | DD150 | L _{C565}
L _{C566} | R^{D143} | | L _{C757} | R^{D175} | | | L _{C182} | DD183 | R^{D183} | L _{C374} | R^{D10} | R^{D154} | L _C 566 | R^{D143} | | L _{C758} | R^{D175} | | | L_{C183} | DD184 | R^{D184} | L _{C375} | R^{D10} | R^{D155} | L_{C567} | R^{D143} | | L _{C759} | R^{D175} | | | L _{C184} | DD185 | R^{D185} | ⊥-С376
Т | R^{D10} | R^{D161} | LC568
I | R^{D143} | | L _{C760} | R^{D175} | | | L _{C185} | RD186 | R^{D186} | ⊥ <i>С</i> 377
I | \mathbb{R}^{D10} | R^{D175} | | R^{D143} | | L _{C761} | R^{D175} | | | L_{C186} | D187 | R^{D187} | ⊥ <i>C</i> 378
I | R^{D17} | R^{D3} | L _{C570} | R^{D143} | | L _{C762} | R^{D175} | | | L _{C187} | RD188 | R^{D188} | <i>∟C</i> 379
I | \mathbf{R}^{D17} | R^{D5} | L _{C571} | R^{D143} | | L _{C763} | R^{D175} | | | L_{C188}
L_{C189} | R^{D189} | R^{D189} | I | pD17 | pD18 | L _{C572}
I | | R^{D116} | $L_{C764} \\ L_{C765}$ | R^{D175} | | | | R^{D190} | R^{D190} | I | \mathbf{p}^{D17} | R^{D20} | L _{C573}
L _{C574} | | R^{D117} | L _{C765}
L _{C766} | R^{D175} | | | $L_{C190} \\ L_{C191}$ | R^{D191} | R^{D191} | T | R^{D17} | R^{D22} | L_{C574}
L_{C575} | R^{D143} | R^{D118} | T | R^{D175} | | | L_{C192} | R^{D192} | R^{D192} | -C383 | R^{D17} | R^{D37} | L _{C576} | R^{D143} | R^{D119} | L.C70 | R^{D175} | | | ~C192 | | | ~C384 | | | ~C576 | | | ~C'/68 | | | wherein R^{D1} to R^{D192} have the following structures: R^{D23} -continued $$\bigwedge$$. $$\mathbb{R}^{D7}$$, \mathbb{R}^{D8} $$\mathbb{R}^{D11}$$ $$\mathbb{R}^{D12}$$, \mathbb{R}^{D13} $$R^{D14}$$ $$\mathbb{R}^{D15}$$ $$\mathbb{R}^{D16}$$, \mathbb{R}^{D17} , $$R^{D18}$$ $$\mathbb{R}^{D21}$$ $$\mathbb{R}^{D25}$$ $$\mathbb{R}^{D26}$$ $$\mathbb{R}^{D27}$$, \mathbb{R}^{D28} , $$\mathbb{R}^{D30}$$ $$\mathbb{R}^{D31}$$ $$\mathbb{R}^{D33}$$ $$\mathbb{R}^{D34}$$ $$R^{D35}$$ $$\mathbb{R}^{D36}$$ $$\mathbb{R}^{D37}$$, $$\mathbb{R}^{D38}$$ $$\mathbb{R}^{D39}$$ $$\mathbb{R}^{D41}$$, \mathbb{R}^{D42} $$R^{D43}$$ -continued $$\mathbb{R}^{D53}$$ ${\rm R}^{D55}$ $$\mathbb{R}^{D57}$$ $$\mathbb{R}^{D62}$$, \mathbb{R}^{D63} $$\mathbb{R}^{D65}$$ $$\mathbb{R}^{D66}$$, \mathbb{R}^{D67} $$\mathbb{R}^{D68}$$ $$\mathbb{R}^{D69}$$ $$\mathbb{R}^{D70}$$, \mathbb{R}^{D71} $$\bigcap_{\mathbb{R}^{D72}}$$ $$\mathbb{R}^{D73}$$ $$\mathbb{R}^{D74}$$ $$R^{D77}$$ $$\mathbb{R}^{D78}$$ $$\mathbb{R}^{D79}$$ $$\mathbb{R}^{D83}$$ $$\mathbb{R}^{D87}$$ $$\mathbb{R}^{D89}$$, \mathbb{R}^{D90} $$\mathbb{R}^{D91}$$ $$\mathbb{R}^{D94}$$, \mathbb{R}^{D95} $$\mathbb{R}^{D96}$$ \mathbb{R}^{D97} $$\mathbb{R}^{D101}$$ $$\mathbb{R}^{D103}$$ $$\mathbb{R}^{D104}$$ $$\mathbb{R}^{D106}$$ $$\mathbb{R}^{D108}$$ $$\mathbb{R}^{D109}$$ $$\mathbb{R}^{D111}$$ $$\mathbb{R}^{D112}$$ $$\mathbb{R}^{D113}$$, \mathbb{R}^{D114} $$\mathbb{R}^{D121}$$ $$\mathbb{R}^{D122}$$ $$\mathbb{R}^{D125}$$ $$\mathbb{R}^{D128}$$ $$\mathbb{R}^{D129}$$ $$\mathbb{R}^{D130}$$ $$\mathbb{R}^{D131}$$ $$\mathbb{R}^{D132}$$ $$\mathbb{R}^{D134}$$ $$\mathbb{R}^{D135}$$ $$R^{D136}$$ $$\mathbb{R}^{D139}$$ $$\mathbb{R}^{D140}$$ $$\mathbb{R}^{D141}$$ $$\mathbb{R}^{D142}$$ $$\mathbb{R}^{D143}$$ $$\mathbb{R}^{D144}$$ $\mathbb{C}F_3$ $\mathbb{C}F_3$, \mathbb{R}^{D145} R^{D161} ${\rm R}^{D162}$ ${\rm R}^{D163}$ R^{D164} R^{D166} R^{D167} R^{D169} ${\rm R}^{D170}$ R^{D171} -continued R^{D146} R^{D148} R^{D149} R^{D152} -continued $$CF_3$$, R^{D147} CF₃ D CF_3 , CF_3 , $$\sum_{CF_3,}^{D}$$ $$CF_3$$ D CF_3 , $$\mathrm{CF}_3$$, R^{D153} $$\operatorname{CF}_3$$ R^{D168} $$^{\mathrm{CF}_{3}}$$, $$\mathbb{C}^{F_3}$$, $$CF_3 \\ CF_3 \\ CF_3,$$ $$\mathbb{R}^{D158}$$ \mathbb{CF}_3 $$R^{D172}$$ $$\mathbb{R}^{D159}$$ CF₃, $$\mathbb{CF}_3$$, $$\mathbb{C}F_3$$ $\mathbb{C}F_3$, $$\mathbb{C}F_3$$, $$\mathbb{C}\mathrm{F}_3$$, $$\mathbb{CF}_3$$, \mathbb{R}^{D178} $$\mathbb{C}\mathrm{F}_3$$, $$\mathbb{C}F_3$$, $$\mathbb{CF}_3$$, $$\mathbb{R}^{D182}$$ \mathbb{CF}_3 $$\mathbb{C}\mathsf{F}_3$$, \mathbb{R}^{D184} -continued RD186 $$\mathbb{C}F_3$$, $$\mathbb{C}F_3$$ $\mathbb{C}F_3$ $\mathbb{C}F_3$, $$\mathbb{R}^{D190}$$ $\mathbb{C}F_3$ $\mathbb{C}F_3$ $$\mathbb{R}^{D191}$$ CF₃, and **[0135]** In some embodiments, L_{Cj} is selected from the group consisting of the items as defined in the Table Lc when the corresponding R^1 and R^2 are defined to be selected from the following structures: $$R^{D1}$$, CH₃, $$R^{D3}$$ $$\mathbb{R}^{D5}$$, $$\mathbb{R}^{D9}$$ $$\mathbb{R}^{D18}$$, $$R^{D22}$$ $$\mathbb{R}^{D40}$$ $$\mathbb{R}^{D42}$$ $$\bigwedge^{\mathbb{R}^{D43}},$$ $$\mathbb{R}^{D50}$$ $$\mathbb{R}^{D54}$$ $$\mathbb{R}^{D55}$$ $$\mathbb{R}^{D78}$$ $$\mathbb{R}^{D79}$$ $$\mathbb{R}^{D81}$$ $$\mathbb{R}^{D116}$$ ${\rm R}^{D147}$ -continued $$\mathbb{R}^{D117}$$ $$\mathbb{R}^{D118}$$ $$\mathbb{R}^{D133}$$ R^{D135} $$\mathbb{R}^{D136}$$ $$\mathbb{C}\mathrm{F}_3$$, -continued $$ho_{\rm CF_3}$$ $ho_{\rm CF_3}$, $ho_{\rm R^{D145}}$ $$\mathbb{C}^{\mathsf{F}_3}$$ $\mathbb{C}^{\mathsf{F}_3}$ $$CF_3$$, CF_3 $$\mathbb{C}F_3$$ $\mathbb{C}F_3$ \mathbb{R}^{D161} \mathbb{R}^{D175} In some embodiments, L_{Cj} is selected from the group consisting of the items as defined in the above table when the corresponding R^1 and R^2 are defined to be selected from the following structures: $$m R^{D1}$$, $m R^{D3}$ $$\mathbb{R}^{D4}$$ \mathbb{R}^{D9} R^{D17} , R^{D22} R^{D43} R^{D50} \mathbb{R}^{D78} \mathbb{R}^{D116} \mathbb{R}^{D118} \mathbb{R}^{D133} \mathbb{R}^{D134} , \mathbb{R}^{D135} R^{D135} -continued \mathbb{R}^{D136} \mathbb{R}^{D143} ho^{CF_3} ho^{CF_3} ho^{CF_3} ----CF₃, R^{D146} \mathbb{R}^{D149} \mathbb{CF}_3 , \mathbb{R}^{D151} $\mathbb{C}F_3$, \mathbb{R}^{D154} \mathbb{R}^{D155} $\mathbb{C}F_3$, \mathbb{R}^{D190} [0136] In some embodiments, the ligand \mathcal{L}_C is selected from the group consisting of, L_{C1-J} L_{C4J} $$F$$ F F $$CF_3$$ CF_3 CF_3 CF_3 $$L_{C145-I}$$ CF_3 , $$L_{C143J}$$ $$L_{C279-I}$$ CF_3 $$CF_3$$ $$CF_3$$ $$CF_3$$ $$L_{C412J}$$ $$CF_3$$ $$CF_3$$ and CF_3 $$CF_3 \longrightarrow CF_3$$ [0137] The compounds of Formula I can be made as follows: **[0138]** reacting approximately four molar equivalents of a compound of Formula KJ with $[MX^1(L_1)(L_2]_2$ at a temperature in a range from 100° C. to 160° C. to provide a product mixture that includes a compound of Formula II; Formula I $$\underbrace{K}_{N} = \underbrace{K}_{A^{1}} \underbrace{A^{1}}_{A^{2}}$$ $$\underbrace{L}_{N} = \underbrace{K}_{A^{1}} \underbrace{A^{2'}}_{A^{3'}}$$ Formula KJ $$\underbrace{\frac{K}{N}}_{R^4} \underbrace{\frac{Hal}{A^1}}_{A^2}$$ -continued Formula II $A^{3'}$ $A^{1'}$ A^{1 [0139] reacting the compound of Formula II with a bidenate ligand L; [0140] wherein each ring K is the same, and represents a 5-membered or 6-membered heteroaryl ring and with ring J forms a 5-member cyclometallated ring; [0141] A^1 and A^1 are the same and selected from CR^1 or N; A^2 and A^2 are the same and selected from CR^2 or N; A^3 and A^3 are the same and selected from CR^3 or N; each R^4 with its corresponding ring position R^4 are the same, wherein R^4 or R^4 represent mono to the maximum allowable substitution, or no substitution, [0142] R¹, R², R³, and each R⁴ are independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; or optionally, any two adjacent groups R¹, R², R³, or any two adjacent groups R⁴, can join to form a carbocyclic ring or a heterocyclic ring, which is optionally substituted; [0143] Hal is selected from Cl, Br, or I; and [0144] G is selected from the group consisting of alkyl, cycloalkyl, heteroalkyl, silyl, aryl, heteroaryl, and any combination thereof; and optionally, each of which is partially or fully substituted with deuterium. [0145] A consumer product comprising an organic light-emitting device (OLED) is also described. The OLED includes an anode, a cathode, and an organic layer disposed between the anode and the cathode, wherein the organic layer includes a compound of Formula I. [0146] In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes. [0147] In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a
lighting panel. [0148] The compounds of Formula I can be designed based in-part on the selection of ligand L, for example, one can select a ligand L_B or a ligand L_C . The selection of a ligand L_B can produce compound of Formula 1 that emits in the blue to blue-green to green regions of the visible spectrum. Alternatively, a selection of a ligand L_C can produce compound of Formula 1 that emits in the green to yellow-green to amber regions of the visible spectrum. For example, compounds 6, 8, and 9 are emissive in the green spectral region upon photoexcitation, in doped poly(methyl methacrylate) (PMMA) 5 wt % at room temperature and in 2-MeTHF at room temperature and 77 K. The substituent of the phenyl group has little or no influence on the color. Moreover, the spectra of the three compounds are almost identical, and show good agreement between the experimental wavelengths and those calculated by DFT calculations. See, Experimental. The emission spectra in PMMA films and in 2-MeTHF at room temperature show broad structureless bands centered at about 528 nm. [0149] In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments. [0150] In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter. [0151] According to another aspect, a formulation comprising the compound described herein is also disclosed. **[0152]** The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments. [0153] The organic layer can also include a host. In some embodiments, two or more hosts are preferred. In some embodiments, the hosts used maybe a) bipolar, b) electron transporting, c) hole transporting or d) wide band gap materials that play little role in charge transport. In some embodiments, the host can include a metal complex. The host can be a triphenylene containing benzo-fused thiophene or benzo-fused furan. Any substituent in the host can be an unfused substituent independently selected from the group consisting of C_nH_{2n+1} , OC_nH_{2n+1} , OAr_1 , $N(C_nH_{2n+1})_2$, Ar_1 — Ar_2 , and C_nH_{2n} — Ar_1 , or the host has no substitutions. In the preceding substituents n can range from 1 to 10; and Ar₁ and Ar₂ can be independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof. The host can be an inorganic compound. For example a Zn containing inorganic material e.g. ZnS. [0154] The host can be a compound comprising at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, azadibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene. The host can include a metal complex. The host can be, but is not limited to, a specific compound selected from the group consisting of: and combinations thereof. Additional information on possible hosts is provided below. **[0155]** In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein. [0156] The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure. In other words, a monovalent or polyvalent variant of the inventive compound can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a "monovalent variant of a compound" refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a "polyvalent variant of a compound" refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. #### Combination with Other Materials [0157] The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination. #### Conductivity Dopants: [0158] A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer. [0159] Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO006081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012. ## HIL/HTL: **[0160]** A hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoO_x ; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds. $\cite{[0161]}$ Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures: $$Ar^{2}$$ Ar^{3} Ar^{3} Ar^{3} Ar^{4} Ar^{2} Ar^{3} Ar^{4} Ar^{5} Ar^{4} Ar^{5} Ar^{6} Ar^{7} Ar^{8} Ar^{8} Ar^{9} Ar^{1} Ar^{2} Ar^{1} Ar^{2} Ar^{3} Ar^{4} Ar^{5} Ar^{5} Ar^{6} Ar^{7} Ar^{8} Ar^{8} Ar^{9} Ar^{9} [0162] Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole,
indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. [0163] In one aspect, Ar¹ to Ar⁹ is independently selected from the group consisting of: wherein k is an integer from 1 to 20; X^{101} to X^{108} is C (including CH) or N; Z^{101} is NAr^1 , O, or S; Ar^1 has the same group defined above. [0164] Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula: $$\begin{bmatrix} \begin{pmatrix} Y^{101} \\ Y^{102} \end{bmatrix} & \text{Met} \longrightarrow (L^{101})k'' \end{bmatrix}$$ wherein Met is a metal, which can have an atomic weight greater than 40; $(Y^{101}-Y^{102})$ is a bidentate ligand, Y^{101} and Y^{102} are independently selected from C, N, O, P, and S; L^{101} is an ancillary ligand; k' is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k'+k" is the maximum number of ligands that may be attached to the metal. [0165] In one aspect, (Y¹⁰¹-Y¹⁰²) is a 2-phenylpyridine derivative. In another aspect, (Y¹⁰¹-Y¹⁰²) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc⁺/Fc couple less than about 0.6 V. [0166] Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2660300, EP650955, JP07-073529, EP2085382, JP2005112765, JP2007091719, JP2008021687, JP2014-KR20110088898, KR20130077473, 009196, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938. US20080014464, US20080091025. US20080106190. US20080124572. US20080145707. US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Nos. 5,061,569, 5,639,914, WO05075451, WO08023550, WO08023759, WO07125714, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018. EBL: [0167] An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below. # Host: [0168] The light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied. [0169] Examples of metal complexes used as host are preferred to have the following general formula: $$\begin{bmatrix} \begin{pmatrix} Y^{103} \\ Y^{104} \end{bmatrix}_{k'} \text{Met} - (L^{101})k''$$ wherein Met is a metal; $(Y^{103}-Y^{104})$ is a bidentate ligand, Y^{103} and Y^{104} are independently selected from C, N, O, P, and S; L^{101} is an another ligand; k' is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k'+k" is the maximum number of ligands that may be attached to the metal. [0170] In one aspect, the metal complexes are: $$\left[\left(\begin{array}{c}O\\\\N\end{array}\right)_{\nu}AI\longrightarrow (L^{101})_{3.k'}\quad \left[\left(\begin{array}{c}O\\\\N\end{array}\right)_{\nu}Zn\longrightarrow (L^{101})_{2.k'}\right]$$ wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N. [0171] In another aspect, Met is selected from Ir and Pt. In a further aspect, $(Y^{103}-Y^{104})$ is a carbene ligand. [0172] In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. [0173] In one aspect, the host compound contains at least one of the following groups in the molecule: -continued $$X_{102}^{101}$$ X_{103}^{102} X_{104}^{102} X_{105}^{102} X_{108}^{103} X_{108}^{104} X_{108}^{105} X_{108}^{106} X_{108}^{107} wherein R^{101} is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X^{101} to X^{108} are independently selected from C (including CH) or N. Z^{101} and Z^{102} are independently selected from NR¹⁰¹, O, or S. [0174] Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2757608, EP2034538A, JP2007254297, KR20100079458. KR20120088644. KR20120129733. KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488. US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2004093207. WO2005014551. WO2001039234. WO2005089025, WO2006072002. WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126,
WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298. WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466, 803, ## Additional Emitters: [0175] One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes. [0176] Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050244673, US2005123791, US20050123788, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359. US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716. US2010105902. US2010244004. US2010270916. US20110057559. US20110108822 US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848. US2013033172. US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653, 654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2011051404, WO2010118029, WO2011044988, WO2012163471, WO2011107491, WO2012020327, WO2013094620, WO2013174471, WO2013107487, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450. ## HBL: [0177] A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface. [0178] In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above. [0179] In another aspect, compound used in HBL contains at least one of the following groups in the molecule: wherein k is an integer from 1 to 20; L^{101} is an another ligand, k' is an integer from 1 to 3. ## ETL: [0180] Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons. [0181] In one aspect, compound used in ETL contains at least one of the following groups in the molecule: -continued R¹⁰¹ $$X^{108}$$ X^{107} X^{108} X^{108} X^{109} X^{109 wherein R¹⁰¹ is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar¹ to Ar³ has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X¹⁰¹ to X^{108} is selected from C (including CH) or N. [0182] In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula: $$\begin{bmatrix} \bigcirc \\ N & Al & (L^{101})_{3-k'} & \begin{bmatrix} \bigcirc \\ N & k \end{bmatrix} Be & (L^{101})_{2-k'} \\ \begin{bmatrix} \bigcirc \\ N & k \end{bmatrix} Zn & (L^{101})_{2-k'} & \begin{bmatrix} \bigcirc \\ N & k \end{bmatrix} Zn & (L^{101})_{2-k'} \end{bmatrix}$$ wherein (O-N) or (N-N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k' is an integer value from 1 to the maximum number of ligands that may be attached to the metal. [0183] Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, US20070104977, KR20130108183. US20040036077. US2007018155. US20090101870. US20090115316. US20090140637, US20090179554, US2009218940. US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925. US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894. WO2010072300, WO2011074770, WO2011105373. WO2013079217, WO2013145667, WO2013180376, WO2014104499, Charge Generation Layer (CGL) [0184] In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers. [0185] In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof. ## **EXPERIMENTAL** [0186] All reactions are performed under argon using Schlenk tube or glovebox techniques and dried solvents. Reaction of [IrCl(cyclooctene) $_2$] $_2$ (1) with 2-(2-bromophenyl)pyridine in 2-ethoxyethanol: Preparation of Ir(acac) $\{\kappa^2$ -C,N—[C $_6$ BrH $_3$ -py] $\}\{\kappa^2$ -C,N—[C $_6$ H $_4$ -py] $\}$ [0187] [0188] 2-(2-bromophenyl)pyridine (312 μ L, 1.83 mmol) was added to [IrCl(cyclooctene)₂]₂ (1) (400 mg, 0.446 mmol), in 10 mL of 2-ethoxyethanol. The mixture was stirred overnight at reflux (135° C.) leading a yellow suspension, which was dried under vacuum and the residue treated with 3×5 mL of diethylether to afford 581 mg of an insoluble yellow powder. HR-MS (MALDI-TOF; DMSO): m/z calcd. for [C₂₂H₁₄Br₂IrN₂] 658.9, found: 658.4. Calcd. for [C₂₂H₁₅BrIrN₂]: 579.0, found: 579.1. Calcd. for [C₂₂H₁₆IrN₂]. [0189] Acetylacetone (67.4 µL, 0.666 mmol) and KOH (44.0 mg, 0.666 mmol) in 2 mL of methanol was added to the yellow powder (439.5 mg, 0.317 mmol) in 15 mL of THF. The mixture was stirred at 60° C., for 90 min, in a closed system. Then, the solvent was removed under vacuum and the residue was treated with 15 mL of CH₂Cl₂. The resulting suspension was filtered over Celite to afford a yellow solution, which was concentrated almost to dryness under vacuum. The addition of 5 mL pentane led to a yellow solid, which was washed with 2×4 mL pentane and dried under vacuum. The solid (a mixture of compounds 5, 6, and 7) was purified by silica column chromatography using toluene-pentane-ethyl acetate (1-3-1) as eluents. Yield: 180.6 mg (42%). The desired tris-heteroleptic compound 6 is obtained with 82% selectivity. Anal. Calcd for C₂₇H₂₂BrIrN₂O₂: C, 47.79; H, 3.27; N, 4.13. Found: C, 47.78; H, 3.66; N, 4.16. ## Suzuki-Miyaura Cross-Coupling [0190] [0191] Suzuki-Miyaura cross-coupling reactions were performed in toluene, at 90° C. Under these conditions, the treatment of a mixture of compounds 5, 6, and 7 with 4.0 mol of RB(OH)2 and 4.0 mol of K3PO4, in the presence of Pd(PPh₃)₄ (10 mol %), for 24 hr quantitatively gives the corresponding tris-heteroleptic complexes Ir(acac) $\{\kappa^2$ -C, $N = [C_6RH_3 - py] \{ \kappa^2 - C, N = [C_6H_4 - py] \} (R = Me(8),
Ph(9)),$ which were isolated after column chromatography as pure yellow solids in about 75% yield (about 60% with regard to the starting dimer (1) which a person of skill would not expect, particularly for a one-pot procedure. Compounds (8) and (9) were characterized by X-ray diffraction analysis. FIG. 5 shows the geometry around the iridium is octahedral with the pyridyl groups situated mutually trans. In the perpendicular plane, the metalated carbon atoms of the phenyl groups lie trans to the acac-oxygen atoms. [0192] Compounds 6, 8, and 9 are emissive in the green spectral region upon photoexcitation, in doped poly(methyl methacrylate) (PMMA) 5 wt % at room temperature and in 2-MeTHF at room temperature and 77 K. The three compounds show a reversible one-electron oxidation between 0.50 and 0.35 V, and no reduction peaks were observed within the solvent window. Electrochemical and DFT Molecular Orbital Energy Data for Complexes 6, 8, and 9 [0193] | Comp. | E _{1/2} °x a (V) | HOMO ^b (eV) | LUMO ^b (eV) | $\mathrm{HLG}^{b,c}$ (eV) | |-------|---------------------------|------------------------|------------------------|--------------------------------------| | 6 | 0.48 | -5.08 | -1.49 | -3.59 | | 8 | 0.39 | -4.94 | -1.32 | -3.62 | | 9 | 0.42 | -4.98 | -1.37 | -3.61 | $^{^{\}alpha}Measured$ in degassed dichloromethane (6) and acetonitrile (8, 9) solutions (1 \times $10^{-3}M)/[Bu_4N]PF_6$ (0.1M), vs Fc/Fc+ at 0.1 V/s, at room temperature. *HOMO, LUMO, singlet energy S1, and triplet energy T1 were calculated within the Gaussian16 software package using the B3LYP hybrid functional set and cep-31G basis set. S1 and T1 were obtained using TDDFT at the optimized ground state geometry. A continuum solvent model was applied to simulate tetrahydrofuran solvent. [0194] The calculations obtained with the above-identified DFT functional set and basis set are theoretical. Computational composite protocols, such as the Gaussian09 with B3LYP and CEP-31G protocol used herein, rely on the assumption that electronic effects are additive and, therefore, larger basis sets can be used to extrapolate to the complete basis set (CBS) limit. However, when the goal of a study is to understand variations in HOMO, LUMO, Si, Ti, bond dissociation energies, etc. over a series of structurallyrelated compounds, the additive effects are expected to be similar. Accordingly, while absolute errors from using the B3LYP may be significant compared to other computational methods, the relative differences between the HOMO, LUMO, Si, Ti, and bond dissociation energy values calculated with B3LYP protocol are expected to reproduce experiment quite well. See, e.g., Hong et al., Chem. Mater. 2016, 28, 5791-98, 5792-93 and Supplemental Information (discussing the reliability of DFT calculations in the context of OLED materials). Moreover, with respect to iridium or platinum complexes that are useful in the OLED art, the data obtained from DFT calculations correlates very well to actual experimental data. See Tavasli et al., J. Mater. Chem. 2012, 22, 6419-29, 6422 (Table 3) (showing DFT calculations closely correlating with actual data for a variety of emissive complexes); Morello, G. R., J. Mol. Model. 2017, 23:174 (studying of a variety of DFT functional sets and basis sets and concluding the combination of B3LYP and CEP-31G is particularly accurate for emissive complexes). [0195] It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting. We claim: 1. A compound of Formula I Formula I wherein L is a bidentate ligand coordinated to a metal M; each ring K is the same, and represents a 5-membered or 6-membered heteroaryl ring and with ring J forms a 5-member cyclometallated ring; A¹ and A¹ are the same and selected from CR¹ or N; A² and A² are the same and selected from CR² or N; A³ and A³ are the same and selected from CR³ or N; each R⁴ with its corresponding ring position R⁴ are the same, wherein R⁴ or R⁴ represent mono to the maximum allowable substitution, or no substitution, - R¹, R², R³, and each R⁴ are independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; or optionally, any two adjacent groups R¹, R², R³, or any two adjacent groups R⁴, can join to form a carbocyclic ring or a heterocyclic ring, which is optionally substituted; - R⁵ is selected from the group consisting of alkyl, cycloalkyl, heteroalkyl, halogen, silyl, aryl, heteroaryl, and any combination thereof; and optionally, each of which is substituted. - 2. The compound of claim 1, wherein R¹, R², R³, and each R⁴ are independently hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and any combination thereof; - 3. The compounds of claim 1 of Formula I obtained from a synthetic process that comprises a reaction of $[MX^1(L_1)(L_2)]_2$ and a bidentate ligand KJ at a temperature in a range from 85° C. to 160° C., ^bValues from the electronic structures DFT calculations. [&]quot;HLG = LUMO - HOMO wherein L₁ and L₂ are the same or different bidentate or olefin ligands; and X¹ is a bridge halogen selected from the group consisting of fluorine, chlorine, bromine, and iodine; and Hal is selected from Cl, Br, or I. **4**. The compound of claim **3**, wherein the synthetic process provides a product mixture that includes X¹ bridged dimers of Formula XX, Formula HH and Formula XH, Formula XX Formula HH Formula XH wherein the compound of Formula XH is obtained with a product selectivity of at least 70%. - 5. The compound of claim 1, wherein the ring K is selected from pyridyl, pryrimidyl, pyrazyl, or imidazolyl, each of which is optionally substituted. - **6**. The compound of claim **1**, wherein R¹, R², and R³, and each R⁴ is independently hydrogen or a substituent group selected from the group consisting of: - a C₁-C₆ alkyl, which is optionally substituted; - a C5-C12 cycloalkyl, which is optionally substituted; - a C₆-C₁₀ aryl, which is optionally substituted; - a C₅-C₁₃ heteroaryl, which is optionally substituted; and any two adjacent R¹, R² and R³, or two adjacent R⁴, join to form a ring selected from the group consisting of a fused benzene ring or an aza-analog thereof, and a fused heterocyclic ring, each of which is optionally substituted. 7. The compound of claim 1, wherein at least one of R^1 , R^2 , or R^3 is a C_1 - C_6 alkyl that is partially or fully deuterated, or at least one respective R^4 is a C_1 - C_6 alkyl that is partially or fully deuterated. **8**. The compound of claim **1**, wherein the adjacent R^1 and R^2 , and the corresponding and R^1 and R^2 ; the adjacent R^2 and R^3 , and the corresponding and R^2 and R^3 ; or two adjacent R^4 and the corresponding adjacent R^4 , join to form a ring of formula DY or Formula NY Formula DY Z_{2} Z_{3} Z_{3} Z_{4} Formula NY wherein * indicate connection to form a fused ring; - Y is selected from O, S, and NR^N, wherein R^N is selected from the group consisting of alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, aryl, and heteroaryl, each of which is optionally substituted; - D is a direct bond, NR^N, CR^xR^y, SiR^xR^y, GeR^xR^y, wherein R^x and R^y are independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryl, heteroaryl, and combinations thereof; - Z₁, Z₂, Z₃, and Z₄ are independently selected from CR^Z or N, wherein each R^Z is independently hydrogen or a substituent selected from the group consisting of deuterium, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryl, heteroaryl, and combinations thereof; and R^B is selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryl, and heteroaryl, each of which is optionally substituted. - **9**. The compound of claim **1**, wherein the metal M is selected from Ir, Rh, Os, or Re. - 10. A compound of Formula II Formula II wherein each ring K is the same, and represents a 5-membered or 6-membered heteroaryl ring and with ring J forms a 5-member cyclometallated ring; A^1 and A^1 are the same and selected from CR^1 or N; A^2 and A^2 are the same and selected from CR^2 or N; A^3 and A^3 are the same and selected from CR^3 or N; each R^4 with its corresponding ring position R^4 are the same, wherein R^4 or R^4 represent mono to the maximum allowable substitution, or no substitution, R¹, R², R³, and each R⁴ are independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; or optionally, any two adjacent groups R¹, R², R³, or any two adjacent groups R⁴, can join to form a carbocyclic ring or a heterocyclic ring, which is optionally substituted; and G is selected from
the group consisting of alkyl, cycloalkyl, heteroalkyl, silyl, aryl, heteroaryl, and any combination thereof, and optionally, each of which is partially or fully substituted with deuterium. 11. The compound of claim 10, wherein at least one of R^1 , R^2 , R^3 , or R^4 is a C_1 - C_6 alkyl that is partially or fully deuterated, a C_6 - C_{10} aryl, which is optionally substituted, or a C_5 - C_{13} heteroaryl, which is optionally substituted; or the adjacent R^1 and R^2 , and the corresponding and R^1 and R^2 , the adjacent R^2 and R^3 , and the corresponding and R^2 and R^3 , or two adjacent R^4 and the corresponding adjacent R^4 , join to form a ring of formula DY or Formula NY Formula DY $$Z_2$$ Z_3 Z_4 Z_3 Z_4 wherein * indicate connection to form a fused ring; Y is selected from O, S, and NR^N, wherein R^N is selected from the group consisting of alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, aryl, and heteroaryl, each of which is optionally substituted; D is a direct bond, NR^N, CR^xR^y, SiR^xR^y, GeR^xR^y, wherein R^x and R^y are independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryl, heteroaryl, and combinations thereof, Z_1, Z_2, Z_3 , and Z_4 are independently selected from CR^Z or N, wherein each R^Z is independently hydrogen or a substituent selected from the group consisting of deuterium, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryl, heteroaryl, and combinations thereof, and R^B is selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryl, and heteroaryl, each of which is optionally substituted. 12. The compound of claim 1, wherein the ligand L is a ligand L_B selected from the group consisting of structure L_{B1} to L_{B263} $$L_{B2}$$ $$L_{B4}$$ $$L_{B6}$$ $$L_{\bar{B}8}$$ $$L_{B10}$$ $$L_{B11}$$ $$L_{B12}$$ $D_{3}C$ $$L_{B13}$$ $$L_{B14}$$ N CD_3 $$L_{B16}$$ CD_3 , $$L_{B18}$$ D_3C N $$L_{B19}$$ $$L_{B20}$$ D_3C N $$L_{B21}$$ $$CD_3$$ CD_3 , $$L_{B23}$$ $$CD_3$$ N D_3C $$L_{B26}$$ $D_{3}C$ L_{B28} $$\mathcal{L}_{B30}$$ $$\mathcal{L}_{B32}$$ $\mathcal{D}_{3}\mathcal{C}$ $$L_{B36}$$ D_3C N D_3C $$L_{B38}$$ CD_3 L_{B39} $$L_{B40}$$ $$L_{B42}$$ D_3C $$L_{B43}$$ $$L_{B44}$$ D_3C $$L_{B45}$$ $$L_{B46}$$ $D_{3}C$ $$L_{B48}$$ CD_3 , CD_3 $$CD_3$$ CD_3 CD_3 $$L_{B51}$$ $$D_3C$$ D_3C $$L_{B54}$$ $$L_{B56}$$ D_3C CD_3 $$L_{B57}$$ $$L_{B58}$$ $D_{3}C$ CD_{3} $$L_{B59}$$ $$D_3C$$ $$L_{B61}$$ $$D_3C$$, CD_3 L_{B63} $$L_{B64}$$ D_3C CD_2 $$L_{B66}$$ $$L_{B68}$$ $D_{3}C$ CD_{3} $$L_{B70}$$ CD_3 , $$CD_3$$ CD_3 , CD_3 , $\begin{array}{c} \text{CD}_3\\ \text{CD}_3,\\ \text{N} \end{array}$ $$CD_3$$ CD_3 , D_3C $$CD_3$$ CD_3 , CD_3 , CD_3 $$CD_3$$ CD_3 , CD_3 , CD_3 $$CD_3$$ CD_3 CD_3 CD_3 $$D_3C$$ CD_3 , D_3C $$\mathcal{L}_{B86}$$ \mathcal{L}_{B86} \mathcal{L}_{B86} \mathcal{L}_{B86} $$L_{B87}$$ $$\begin{array}{c} L_{B88} \\ \\ D_{3}C \\ \\ \end{array}$$ $$\mathcal{L}_{B90}$$ \mathcal{L}_{CD_3} $$L_{B92}$$ CD_3 CD_3 $$L_{B94}$$ D_3C D_3C L_{B96} D_3C N $$L_{B97}$$ $$L_{B98}$$ D_3C N CD_3 $$L_{B100}$$ CD_3 CD_3 CD_3 $$L_{B102}$$ D_3C CD_3 CD_3 $$L_{B104}$$ D_3C N D_3C N $$L_{B106}$$ D_3C D_3C L_{B107} $$\begin{array}{c} L_{B108} \\ \\ \end{array}$$ $$L_{B110}$$ CD_3 CD_3 CD_3 , \mathbb{L}_{B111} $$\begin{array}{c} \text{CD}_3\\ \text{D}_3\text{C}\\ \\ \text{D}_3\text{C}\\ \\ \text{CD}_3\\ \end{array},$$ $$L_{B114}$$ D_3C CD_3 D_3C CD_3 CD_3 \mathbb{L}_{B120} \mathbb{L}_{B121} \mathcal{L}_{B122} -continued $$L_{B116}$$ D_3C CD_3 CD_3 CD_3 , -continued \mathcal{L}_{B117} L_{B119} L_{B118} \mathbb{L}_{B213} $$L_{B|24}$$ -continued \mathbb{L}_{B125} \mathbb{L}_{B126} \mathcal{L}_{B127} \mathbb{L}_{B129} \mathbb{L}_{B128} $$L_{B130}$$ \mathbb{L}_{B131} $$L_{B132}$$ $D_{3}C$ N N $$\begin{array}{c|c} & & & \\ & & & \\ D & & & \\ D & & \\ D & & \\ D & & \\ N & & \\ \end{array}$$ $$L_{B136}$$ D CD_3 $$L_{B137}$$ $$L_{B138}$$ $$L_{B139}$$ $$L_{B140}$$ $$L_{B|4|}$$ $$L_{B142}$$ D_3C N CD_2 \mathcal{L}_{B144} $$D$$ N CD_3 $$L_{B146}$$ D N CD_3 $$L_{B147}$$ $$L_{B148}$$ L_{B150} $$L_{B151}$$ $$L_{B152}$$ $$L_{B153}$$ $$L_{B154}$$ $$L_{B156}$$ D D N CD_3 $$L_{B158}$$ $D_{3}C$ \mathbb{L}_{B163} \mathbb{L}_{B164} L_{B165} \mathcal{L}_{B166} -continued L_{B159} L_{B160} $$N_{N_{\infty}}$$, CD_3 L_{B161} \mathcal{L}_{B162} L_{B168} \mathbb{L}_{B169} \mathcal{L}_{B170} -continued $$L_{B171}$$ $$L_{B172}$$ $$L_{B173}$$ N CD_3 $$L_{B174}$$ L_{B175} -continued $$L_{B179}$$ D_3C N CD_3 L_{B176} L_{B181} L_{B180} L_{B177} L_{B182} \mathcal{L}_{B178} $$CD_3$$ L_{B187} $$L_{B184}$$ $$CD_3$$ $$\mathcal{L}_{B185}$$ $$L_{B186}$$ $$D_3C$$ $$L_{B189}$$ $$\mathbb{L}_{B190}$$ L_{B191} $$L_{B192}$$ $$L_{B193}$$ $$L_{B194}$$ $$L_{B197}$$ $$L_{B198}$$ $$L_{B199}$$ $$L_{B200}$$ $$L_{B202}$$ N D $$L_{B204}$$ $D_{3}C$ $N_{\bullet,\bullet}$ $$L_{B206}$$ D N CD_3 $$L_{B208}$$ D_3C N L_{B209} $$L_{B210}$$ $$\begin{array}{c} D \\ D \\ \end{array}$$ $$L_{B214}$$ $$L_{B216}$$ D_3C CD_3 $$L_{B217}$$ L_{B218} CD_3 $$L_{B220}$$ $$L_{B224}$$ $$L_{B225}$$ $$L_{B227}$$ D_3C $$CD_3$$ D_3C D_3C \mathbb{L}_{B233} $$D_3C$$ CD_3 N CD_3 $$L_{B327}$$ \mathbb{L}_{B234} \mathcal{L}_{B235} \mathbb{L}_{B239} L_{B240} -continued L_{B241} \mathbb{L}_{B243} L_{B242} -continued $$D_3C$$ D_3C CD_3 $$\begin{array}{c} D \\ D \\ \end{array}$$ \mathbb{L}_{B246} \mathcal{L}_{B245} L_{B248} L_{B249} -continued L_{B247} $$\begin{array}{c|c} D & CD_3 \\ \hline \end{array}$$ $$D_3C$$ D_3C CD_3 $$L_{B252}$$ $$L_{B254}$$ D CD_3 CD_3 $$L_{B256}$$ D_3C CD_3 \mathbb{L}_{B258} $$\begin{array}{c} D \\ D \\ \end{array}$$ $$\begin{array}{c} D & D & CD_3 \\ \hline \\ N & \\ \hline \\ CD_3 \end{array}$$ $$D_3C$$ D_3C N CD_3 13. The compound of claim 1, wherein the ligand L is selected from the group consisting of L_{C1-I} through L_{C768-I} with general numbering formula L_{Cj-I} (j is an integer of 1 to 768) based on a structure of and L_{B263} $\mathcal{L}_{C1\text{-}II}$ through $\mathcal{L}_{C768\text{-}II}$ with general numbering formula $\mathcal{L}_{Cj\text{-}II}$ based on a structure of wherein for each L_C , R^1 and R^2 are defined as: | Ligand | \mathbb{R}^1 | R ² | Ligand | R ¹ | R ² | Ligand | R ¹ | \mathbb{R}^2 | Ligand | \mathbb{R}^1 | \mathbb{R}^2 | |---------------------|-------------------|-------------------|------------------------|-------------------|--------------------|----------------------|-----------------|-------------------|-------------------|-------------------|-------------------| | L_{C1} | R^{D1} | R^{D1} | L _{C193} | R^{D1} | R^{D3} | L _{C385} | R^{D17} | R^{D40} | L _{C577} | | R^{D120} | | L_{C2} | R^{D2} | R^{D2} | L_{C194} | R^{D1} | R^{D4} | L _{C386} | R^{D17} | R^{D41} | L _{C578} | R^{D143} | R^{D133} | | L_{C3} | R^{D3} | R^{D3} | L_{C195} | R^{D1} | R^{D5} | L _{C387} | R^{D17} | R^{D42} | L _{C579} | R^{D143} | R^{D134} | | L_{C4} | R^{D4} | R^{D4} | L_{C196} | \mathbb{R}^{D1} | R^{D9} | L _{C388} | R^{D17} | R^{D43} | L_{C580} | R^{D143} | R^{D135} | | L_{C5} | R^{D5} | R^{D5} | L_{C197} | R^{D1} | R^{D10} | L_{C389} | R^{D17} | R^{D48} | L_{C581} | R^{D143} | R^{D136} | | L_{C6} | R^{D6} | R^{D6} | \mathcal{L}_{C198} | R^{D1} | R^{D17} | L_{C390} | R^{D17} | R^{D49} | L_{C582} | R^{D143} | | | L_{C7} | R^{D7} | R^{D7} | L_{C199} | R^{D1} | R^{D18} | L_{C391} | R^{D17} | R^{D50} | L_{C583} | | R^{D145} | | L_{C8} | R^{D8} | R^{D8} | L _{C200} | \mathbb{R}^{D1} | R^{D20} | L_{C392} | R^{D17} | R^{D54} | L_{C584} | | R^{D146} | | L_{C9} | \mathbb{R}^{D9} | \mathbb{R}^{D9} | \mathcal{L}_{C201} | \mathbb{R}^{D1} | R^{D22} | \mathcal{L}_{C393} | R^{D17} | R^{D55} | L_{C585} | R^{D143} | R^{D147} | | L_{C10} | R^{D10} | R^{D10} | \mathcal{L}_{C202} | \mathbb{R}^{D1} | R^{D37} | L_{C394} | R^{D17} | R^{D58} | L_{C586} | R^{D143} | R^{D149} | | L_{C11} | R^{D11} | R^{D11} | L_{C203} | \mathbb{R}^{D1} | R^{D40} | L_{C395} | R^{D17} | R^{D59} | L_{C587} | R^{D143} | R^{D151} | | L_{C12} | R^{D12} | R^{D12} | L_{C204} | \mathbb{R}^{D1} | R^{D41} | L_{C396} | R^{D17} | R^{D78} | L_{C588} | R^{D143} | R^{D154} | | L_{C13} | R^{D13} | R^{D13} | L_{C205} | \mathbb{R}^{D1} | R^{D42} | L_{C397} | R^{D17} | R^{D79} | L_{C589} | R^{D143} | | | L_{C14} | R^{D14} | R^{D14} | L_{C206} | \mathbb{R}^{D1} | R^{D43} | L_{C398} | R^{D17} | R^{D81} | L_{C590} | | R^{D161} | | L_{C15} | R^{D15} | R^{D15} | L_{C207} | R^{D1} | R^{D48} | L_{C399} | R^{D17} | R^{D87} | L_{C591} | R^{D143} | ${\rm R}^{D175}$ | | L_{C16} | R^{D16} | R^{D16} | L_{C208} | R^{D1} | R^{D49} | L_{C400} | R^{D17} | R^{D88} | L_{C592} | R^{D144} | \mathbb{R}^{D3} | | L_{C17} | R^{D17} | R^{D17} | L _{C209} | \mathbb{R}^{D1} | R^{D50} | L_{C401} | R^{D17} | R^{D89} | L_{C593} | R^{D144} | R^{D5} | | L_{C18} | R^{D18} | R^{D18} | L_{C210} | R^{D1} | R^{D54} | L_{C402} | R^{D17} | R^{D93} | L_{C594} | R^{D144} | | | L_{C19} | R^{D19} | R^{D19} | L_{C211} | R^{D1} | R^{D55} | L_{C403} | R^{D17} | R^{D116} | L_{C595} | R^{D144} | | | L _{C20} | R^{D20} | R^{D20} | L _{C212} | R^{D1} | R^{D58} | L_{C404} | R^{D17} | R^{D117} | L _{C596} | R^{D144} | | | L _{C21} | R^{D21} | R^{D21} | L_{C213} | R^{D1} | R^{D59} | L_{C405} |
R^{D17} | R^{D118} | L _{C597} | R^{D144} | | | L_{C22} | R^{D22} | R^{D22} | L_{C214} | R^{D1} | R^{D78} | L_{C406} | R^{D17} | R^{D119} | L_C508 | R^{D144} | | | L_{C23} | R^{D23} | R^{D23} | L_{C215} | \mathbb{R}^{D1} | \mathbf{R}^{D79} | \mathcal{L}_{C407} | R^{D17} | R^{D120} | L _{C599} | R^{D144} | | | \mathcal{L}_{C24} | R^{D24} | R^{D24} | $\mathcal{L}_{C\!216}$ | \mathbb{R}^{D1} | R^{D81} | \mathcal{L}_{C408} | R^{D17} | R^{D133} | Locas | R^{D144} | | | L_{C25} | R^{D25} | R^{D25} | L _{C217} | R^{D1} | R^{D87} | L_{C409} | R^{D17} | R^{D134} | Local | R^{D144} | R^{D42} | | L _{C26} | R^{D26} | R^{D26} | L _{C218} | \mathbb{R}^{D1} | R^{D88} | L_{C410} | R^{D17} | R^{D135} | L_{C602} | R^{D144} | R^{D43} | | L _{C27} | R^{D27} | R^{D27} | L _{C219} | \mathbb{R}^{D1} | R^{D89} | L _{C411} | R^{D17} | R^{D136} | Locar | R^{D144} | R^{D48} | | L _{C28} | R^{D28} | R^{D28} | L _{C220} | R^{D1} | R^{D93} | LCII | R^{D17} | R^{D143} | Lccoa | R^{D144} | R^{D49} | | L _{C29} | R^{D29} | R^{D29} | L _{C221} | R^{D1} | R^{D116} | L_{C413} | R^{D17} | R^{D144} | L_{C605} | R^{D144} | R^{D54} | | L _{C30} | R^{D30} | R^{D30} | L _{C222} | R^{D1} | R^{D117} | L _{C414} | R^{D17} | R^{D145} | L _{C606} | R^{D144} | | | I C30 | R^{D31} | R^{D31} | T C222 | R^{D1} | R^{D118} | C414 | R^{D17} | R^{D146} | C000 | R^{D144} | | | L _{C31} | R^{D32} | R^{D32} | L _{C223} | R^{D1} | R^{D119} | -0413 | R^{D17} | R^{D147} | C007 | R^{D144} | | | L _{C32} | R^{D33} | R^{D33} | L _{C224} | R^{D1} | R^{D120} | | R^{D17} | R^{D149} | 2000 | R^{D144} | | | L_{C33} | R^{D34} | R^{D34} | L _{C225} | R^{D1} | R^{D133} | C417 | R^{D17} | R^{D151} | 0009 | R^{D144} | | | L _{C34} | K-235 | R ^{D35} | L _{C226} | | K 2134 | L_{C418} | R^{D17} | R^{D154} | L _{C610} | R^{D144} | N D87 | | L _{C35} | R^{D35} | R ^{D33} | L _{C227} | \mathbb{R}^{D1} | R ^{D134} | L _{C419} | R ^{D1} | K ^{D134} | L_{C611} | K ^{D144} | K ^{D0} ′ | -continued | | | | | | -con | unuea | | | | | | |---|---|---|--|-------------------|---------------------------------------|---|---------------------|---|---|--------------------------|---| | Ligand | R ¹ | R^2 | Ligand | \mathbb{R}^1 | \mathbb{R}^2 | Ligand | \mathbb{R}^1 | R^2 | Ligand | R^1 | R ² | | \mathcal{L}_{C36} | ${\bf R}^{D36}$ | \mathbf{R}^{D36} | \mathcal{L}_{C228} | \mathbb{R}^{D1} | R^{D135} | \mathcal{L}_{C420} | R^{D17} | R^{D155} | L_{C612} | R^{D144} | \mathbf{R}^{D88} | | L _{C37} | R^{D37} | R^{D37} | L_{C229} | \mathbb{R}^{D1} | R ^{D136} | L_{C421} | R^{D17} | R ^{D161} | L_{C613} | R^{D144} | | | L_{C38} | R^{D38} R^{D39} | $\begin{array}{c} R^{D38} \\ R^{D39} \end{array}$ | L _{C230} | R^{D1} R^{D1} | R^{D143} R^{D144} | L_{C422} | R^{D17} R^{D50} | R^{D175} R^{D3} | L _{C614} | R^{D144}
R^{D144} | R^{D93} R^{D116} | | L _{C39} | \mathbf{R}^{D40} | R^{D40} | L _{C231} | R^{D1} | R^{D145} | L _{C423} | \mathbb{R}^{D50} | R^{D5} | L _{C615} | R^{D144} | R^{D117} | | \mathcal{L}_{C40} \mathcal{L}_{C41} | R^{D41} | R^{D41} | L_{C232} L_{C233} | R^{D1} | R^{D146} | L _{C424}
L _{C425} | R^{D50} | R^{D18} | \mathcal{L}_{C616} \mathcal{L}_{C617} | R^{D144} | R^{D118} | | L _{C42} | D^{D42} | \mathbf{p}^{D42} | L _{C234} | R^{D1} | \mathbf{p}^{D14} | L _{C426} | \mathbf{p}^{D50} | R^{D20} | L _{C618} | DD144 | DD119 | | L_{C43} | D^{D43} | R^{D43} | L _{C235} | \mathbb{R}^{D1} | R^{D149} | L_{C427} | D^{D50} | R^{D22} | L _{C619} | R^{D144} | R^{D120} | | L_{C44} | R^{D44} | R^{D44} | L _{C236} | R^{D1} | R ^{D151} | L_{C428} | R^{D50} | R^{D37} | L_{C620} | R^{D144} R^{D144} | R^{D133} | | L_{C45} | R^{D45} R^{D46} | R^{D45} R^{D46} | L _{C237} | R^{D1} R^{D1} | R^{D154} R^{D155} | L _{C429} | R^{D50} R^{D50} | \mathbf{R}^{D40} \mathbf{R}^{D41} | L _{C621} | R^{D144} R^{D144} | R^{D134} R^{D135} | | L_{C46} | R^{D47} | R^{D47} | L _{C238} | R^{D1} | R^{D161} | L _{C430} | R^{D50} | R^{D42} | L _{C622} | R^{D144} | R^{D136} | | \mathcal{L}_{C47} \mathcal{L}_{C48} | pD48 | R^{D48} | L_{C239}
L_{C240} | R^{D1} | R^{D175} | $\begin{array}{c} \mathbf{L}_{C431} \\ \mathbf{L}_{C432} \end{array}$ | pD50 | R^{D43} | L_{C623}
L_{C624} | R^{D144} | R^{D145} | | L _{C49} | \mathbb{R}^{D49} | R^{D49} | L _{C241} | R^{D4} | R^{D3} | L _{C432} | \mathbb{R}^{D50} | R^{D48} | L _{C625} | R^{D144} | pD146 | | L_{C50} | \mathbb{R}^{D50} | R^{D50} | L _{C242} | R^{D4} | R^{D5} | L_{C434} | \mathbb{R}^{D50} | R^{D49} | L _{C626} | R^{D144} | R^{D147} | | L_{C51} | R^{D51} | R^{D51} | L _{C243} | R^{D4} | R^{D9} | L_{C435} | R^{D50} | R^{D54} | L _{C627} | R^{D144} | R^{D149} | | L_{C52} | $\begin{array}{c} \mathbf{R}^{D52} \\ \mathbf{R}^{D53} \end{array}$ | \mathbf{R}^{D52} \mathbf{R}^{D53} | L _{C244} | R^{D4} R^{D4} | \mathbf{R}^{D10} \mathbf{R}^{D17} | L_{C436} | R^{D50} R^{D50} | R^{D55} R^{D58} | L _{C628} | R^{D144} R^{D144} | R^{D151}
R^{D154} | | L_{C53} | R^{D53} R^{D54} | R^{D53} R^{D54} | L _{C245} | R^{D4} R^{D4} | R^{D17} R^{D18} | L _{C437} | R^{D50} | R^{D59} | L _{C629} | DD144 | R^{D154} R^{D155} | | L_{C54}
L_{C55} | R^{D55} | R^{D55} | L _{C246}
L _{C247} | R^{D4} | R^{D20} | L_{C438}
L_{C439} | R^{D50} | R^{D78} | L_{C630}
L_{C631} | R^{D144} | R^{D161} | | L_{C56} | pD56 | R^{D56} | L _{C248} | \mathbb{R}^{D4} | \mathbf{p}^{D22} | L _{C440} | R^{D50} | R^{D79} | L_{C632} | R^{D144} | R^{D175} | | L_{C57} | DD57 | R^{D57} | L _{C249} | R^{D4} | R^{D37} | L _{C441} | DD50 | R^{D81} | L _{C633} | p^{D145} | \mathbb{R}^{D3} | | L_{C58} | R^{D58} | R^{D58} | L _{C250} | R^{D4} | R^{D40} | L _{C442} | R^{D50} | R^{D87} | L _{C634} | R^{D145} | R^{D5} | | L_{C59} | R^{D59} R^{D60} | $\begin{array}{c} {\rm R}^{D59} \\ {\rm R}^{D60} \end{array}$ | L_{C251} | R^{D4} | R ^{D41} | L_{C443} | R^{D50} R^{D50} | \mathbf{R}^{D88} \mathbf{R}^{D89} | L_{C635} | R^{D145} R^{D145} | $\begin{array}{c} \mathbf{R}^{D17} \\ \mathbf{R}^{D18} \end{array}$ | | L_{C60} | R^{D60} R^{D61} | R^{D60} R^{D61} | L _{C252} | R^{D4} R^{D4} | R^{D42} R^{D43} | L _{C444} | R^{D50} R^{D50} | R^{D99} R^{D93} | L _{C636} | R^{D145} R^{D145} | R^{D18} R^{D20} | | L _{C61} | R^{D62} | R^{D62} | L _{C253} | R^{D4} | R^{D48} | L _{C445} | R^{D50} | R^{D116} | L _{C637} | R^{D145} | R^{D22} | | L_{C62}
L_{C63} | R^{D63} | R^{D63} | L_{C254}
L_{C255} | R^{D4} | R^{D49} | L _{C446}
L _{C447} | R^{D50} | R^{D117} | L_{C638}
L_{C639} | R^{D145} | \mathbb{R}^{D37} | | L _{C64} | pD64 | R^{D64} | L _{C256} | \mathbb{R}^{D4} | pD50 | L _{C448} | R^{D50} | R^{D118} | L _{C640} | pD145 | pD40 | | L_{C65} | DD65 | R^{D65} | L _{C257} | \mathbf{p}^{D4} | R^{D54} | L_{C449} | R^{D50} | R^{D119} | L_{C641} | R^{D145} | R^{D41} | | L_{C66} | R ^{D66} | R ^{D66} | L_{C258} | R^{D4} | R ^{D55} | L_{C450} | R^{D50} | R^{D120} | L_{C642} | R^{D145}
R^{D145} | R^{D42} R^{D43} | | L _{C67} | R^{D67} R^{D68} | R^{D67} R^{D68} | L _{C259} | R^{D4} R^{D4} | R^{D58} R^{D59} | L _{C451} | R^{D50} R^{D50} | \mathbf{R}^{D133} \mathbf{R}^{D134} | L _{C643} | R^{D145} R^{D145} | R^{D43} R^{D48} | | L_{C68} | R^{D69} | R^{D69} | L _{C260} | R^{D4} | R^{D78} | L _{C452} | R^{D50} | R^{D135} | L _{C644} | R^{D145} | R^{D49} | | L _{C69}
L _{C70} | R^{D70} | R^{D70} | L_{C261}
L_{C262} | R^{D4} | \mathbb{R}^{D79} | L_{C453}
L_{C454} | \mathbb{R}^{D50} | R^{D136} | L_{C645}
L_{C646} | R^{D145} | R^{D54} | | L_{C71} | pD71 | R^{D71} | L _{C263} | \mathbb{R}^{D4} | R^{D81} | L _{C455} | R^{D50} | R^{D143} | L _{C647} | R^{D145} | \mathbb{R}^{D58} | | L _{C72} | R^{D72} | R^{D72} | L _{C264} | \mathbb{R}^{D4} | R^{D87} | L _{C456} | R^{D50} | R^{D144} | L_{C648} | R^{D145} | R^{D59} | | L_{C73} | R^{D73} | R^{D73} | L _{C265} | R^{D4} | R^{D88} | L _{C457} | R^{D50} | R^{D145} | L_{C649} | R^{D145} | R^{D78} | | L_{C74} | R^{D74} R^{D75} | R^{D74} R^{D75} | L _{C266} | R^{D4} | R^{D89} R^{D93} | L _{C458} | R^{D50} R^{D50} | R^{D146} R^{D147} | | R^{D145} R^{D145} | R^{D79} R^{D81} | | L _{C75} | pD76 | R^{D76} | L _{C267} | R^{D4} R^{D4} | R^{D116} | L _{C459} | pD50 | R^{D149} | | pD145 | pD87 | | L _{C76}
L _{C77} | R^{D77} | R^{D77} | L _{C268}
L _{C269} | \mathbb{R}^{D4} | R^{D117} | $L_{C460} \\ L_{C461}$ | R^{D50} | R^{D151} | L _{C652}
L _{C653} | R^{D145} | \mathbb{R}^{D88} | | L_{C78} | \mathbf{p}^{D78} | R^{D78} | L _{C270} | \mathbb{R}^{D4} | R^{D118} | L _{C462} | R^{D50} | R^{D154} | L _{C654} | R^{D145} | R^{D89} | | L _{C79} | pD79 | R^{D79} | L _{C271} | R^{D4} | R^{D119} | L_{C463} | R^{D50} | R^{D155} | L_{C655} | R^{D145} |
\mathbb{R}^{D93} | | L _{C80} | R ^{D80} | R^{D80} | L _{C272} | R^{D4} | R^{D120} | L _{C464} | R^{D50} | R ^{D161} | L _{C656} | R ^{D145} | R ^{D116} | | L _{C81} | R^{D81} R^{D82} | R^{D81} R^{D82} | L_{C273} | R^{D4} R^{D4} | R^{D133} R^{D134} | L_{C465} | R^{D50} R^{D55} | $\mathbf{R}^{D175} \\ \mathbf{R}^{D3}$ | L _{C657} | R^{D145} R^{D145} | \mathbf{R}^{D117} \mathbf{R}^{D118} | | L _{C82} | R^{D82} R^{D83} | R^{D82} R^{D83} | L _{C274} | R^{D4} R^{D4} | R^{D134} R^{D135} | L _{C466} | R^{D55} | R^{D5} R^{D5} | L _{C658} | DD145 | R^{D110} | | L _{C83}
L _{C84} | DD84 | DD84 | L _{C275}
L _{C276} | D^{D4} | R ^{D136} | L _{C467}
L _{C468} | DD55 | DD18 | L _{C659}
L _{C660} | R ^{D145} | R^{D120} | | L _{C85} | \mathbb{R}^{D85} | R^{D85} | L _{C277} | R^{D4} | R^{D143} | I | \mathbb{R}^{D55} | R^{D20} | L _{C661} | R^{D145} | R^{D133} | | L_{C86} | pD86 | R^{D86} | L _{C278} | R^{D4} | R^{D144} | L_{C470} | pD55 | R^{D22} | L _{C662} | R^{D145} | R^{D134} | | L _{C87} | R^{D87} | R^{D87} | L _{C279} | pD4 | \mathbb{R}^{D145} | L_{C471} | R^{D55} | R^{D37} | L _{C663} | R^{D145} | R^{D135} | | L_{C88} | R^{D88} R^{D89} | R^{D88} R^{D89} | L _{C280} | R^{D4} R^{D4} | R^{D146} R^{D147} | L_{C472} | R^{D55} R^{D55} | R^{D40} R^{D41} | L_{C664} | R^{D145} R^{D145} | R^{D136} R^{D146} | | L _{C89} | R^{D90} | R^{D90} | L _{C281} | R^{D4} R^{D4} | R^{D149} | L_{C473} | R^{D55} R^{D55} | R^{D41} R^{D42} | L _{C665} | DD145 | R^{D147} | | L _{C90}
L _{C91} | \mathbf{p}^{D91} | R^{D91} | L _{C282} | R^{D4} | R^{D151} | $L_{C474} \\ L_{C475}$ | pD55 | R^{D43} | L _{C666} | pD145 | pD149 | | L _{C92} | D^{D92} | D^{D92} | $\rm L_{C283} \\ L_{C284}$ | \mathbf{p}^{D4} | P^{D154} | L _{C476} | DD55 | \mathbf{R}^{D48} | L _{C667}
L _{C668} | R^{D145} | R^{D151} | | L _{C93} | DD93 | p^{D93} | L _{C285} | \mathbb{R}^{D4} | R^{D155} | L_{C477} | pD55 | p^{D49} | L _{C669} | R^{D145} | R^{D154} | | L_{C94} | R^{D94} | R^{D94} | L _{C286} | \mathbb{R}^{D4} | R^{D161} | L_{C478} | \mathbb{R}^{D55} | R^{D54} | L_{C670} | R^{D145} | R^{D155} | | L _{C95} | R^{D95} | R^{D95} | L _{C287} | R^{D4} | R^{D175} | L_{C479} | R^{D55} | R^{D58} | L_{C671} | R^{D145} | R ^{D161} | | L_{C96} | R ^{D96} | R ^{D96} | L _{C288} | R^{D9} | R^{D3} | L_{C480} | R ^{D55} | R^{D59} | L _{C672} | RD145 | R^{D175} | | L _{C97} | R^{D97} R^{D98} | R^{D97} R^{D98} | L _{C289} | R^{D9} R^{D9} | R^{D5} R^{D10} | L _{C481} | R^{D55} R^{D55} | R^{D78} R^{D79} | L _{C673} | R^{D146}
R^{D146} | R^{DS} | | L _{C98} | R^{D99} | R^{D99} | L _{C290} | R^{D9} | R^{D17} | L _{C482} | R^{D55} | R^{D81} | L _{C674} | R^{D146} | | | L _{C99} | R^{D100} | R^{D100} | L _{C291} | R^{D9} | R^{D18} | L _{C483} | R^{D55} | R^{D87} | L _{C675} | R^{D146} | R^{D18} | | L_{C100} L_{C101} | R^{D101} | R^{D101} | $\mathcal{L}_{C292} \\ \mathcal{L}_{C293}$ | R^{D9} | R^{D20} | ${\rm L}_{C484} \ {\rm L}_{C485}$ | R^{D55} | R^{D88} | L _{C676}
L _{C677} | R^{D146} | R^{D20} | | L_{C101} L_{C102} | R^{D102} | R^{D102} | L _{C293}
L _{C294} | R^{D9} | R^{D22} | L _{C486} | R^{D55} | R^{D89} | L_{C678} | R^{D146} | R^{D22} | | L_{C102}
L_{C103} | R^{D103} | R^{D103} | Longe | R^{D9} | R^{D37} | L _{C486}
L _{C487} | R^{D55} | R^{D93} | L _{C679} | R^{D146} | R^{D37} | | L _{C104} | R^{D104} | R^{D104} | Longe | R^{D9} | R^{D40} | L _{C488} | R^{D55} | R^{D116} | L _{C680} | R^{D146} | R^{D40} | | L _{C105} | R^{D105} | R^{D105} | L_{C297} | R^{D9} | R^{D41} | L _{C489} | R^{D55} | R^{D117} | L_{C681} | R^{D146} | R^{D41} | | L _{C106} | R^{D106} | R^{D106} | L_{C298} | R^{D9} | R^{D42} | L _{C490} | R^{D55} | \mathbf{R}^{D118} | L_{C682} | ${\bf R}^{D146}$ | R^{D42} | | L_{C107} | ${\rm R}^{D107}$ | R^{D107} | L_{C299} | R^{D9} | R^{D43} | L _{C491} | R^{D55} | R^{D119} | L_{C683} | R^{D146} | R^{D43} | | L_{C108} | R^{D108} | R^{D108} | T | R^{D9} | R^{D48} | L_{C492} | R^{D55} | R^{D120} | I | R^{D146} | | | L_{C109} | R^{D109} | R^{D109} | L_{C301} | R^{D9} | \mathbf{R}^{D49} | L_{C493} | R^{D55} | R^{D133} | L _{C685} | R^{D146} | R^{D49} | -continued | Ligand | R^1 | R ² | Ligand | \mathbb{R}^1 | R^2 | Ligand | R^1 | R ² | Ligand | \mathbb{R}^1 | \mathbb{R}^2 | |--|-----------------------|---|------------------------|---|---|--|--------------------------|---|--|--------------------------|--------------------------| | L _{C110} | R^{D110} | R^{D110} | L _{C302} | R^{D9} | R^{D50} | L _{C494} | R^{D55} | R^{D134} | L _{C686} | R^{D146} | | | L_{C111} | R^{D111} | R ^{D111} | L_{C303} | R^{D9} | R^{D54} | L_{C495} | R ^{D55} | R^{D135} | L_{C687} | R ^{D146} | | | L _{C112} | RD112 | \mathbf{R}^{D112} \mathbf{R}^{D113} | L _{C304} | R^{D9} R^{D9} | \mathbf{R}^{D55} \mathbf{R}^{D58} | L _{C496} | $R^{D55} \\ R^{D55}$ | R^{D136} | L _{C688} | R^{D146}
R^{D146} | R^{D39} | | L _{C113} | pD114 | R^{D114} | L _{C305} | R^{D9} | R^{D59} | L _{C497} | R^{D55} | DD144 | L _{C689}
L _{C690} | R ^{D146} | | | L_{C114} L_{C115} | R^{D115} | \mathbb{R}^{D115} | I | R^{D9} | R^{D78} | L _{C498}
L _{C499} | R^{D55} | R ^{D145} | L _{C691} | R^{D146} | R^{D81} | | L _{C116} | R^{D116} | R^{D116} | T | R^{D9} | R^{D79} | L _{C500} | \mathbb{R}^{D55} | R^{D146} | L _{C692} | R^{D146} | R^{D87} | | L _{C117} | R^{D117} | $R^{D11/}$ | Long | R^{D9} | R^{D81} | L _{C501} | R^{D55} | ${\rm R}^{D147}$ | L _{C693} | R^{D146} | R^{D88} | | L_{C118} | R^{D118} | R^{D118} | Lonio | R^{D9} | R^{D87} | L_{C502} | R^{D55} | R^{D149} | L_{C694} | R^{D146} | R^{D89} | | L_{C119} | RD119 | R ^{D119} | L _{C311} | R^{D9} R^{D9} | \mathbf{R}^{D88} \mathbf{R}^{D89} | L _{C503} | R^{D55} R^{D55} | R^{D151}
R^{D154} | L _{C695} | R ^{D146} | | | L _{C120} | DD121 | \mathbf{R}^{D120} \mathbf{R}^{D121} | L _{C312} | R^{D9} | R^{D03} R^{D93} | L _{C504} | R^{D55} R^{D55} | R^{D155} | L_{C696} | DD146 | R^{D117}
R^{D118} | | L _{C121} | R ^{D122} | R^{D122} | L _{C313} | R^{D9} | R^{D116} | L _{C505}
L _{C506} | R^{D55} | R^{D161} | ${\rm L}_{C697} \ {\rm L}_{C698}$ | R ^{D146} | R^{D119} | | L_{C122}
L_{C123} | R^{D123} | R^{D123} | I | R^{D9} | R^{D117} | L _{C507} | R^{D55} | R^{D175} | | | R^{D120} | | L_{C124} | R^{D124} | R^{D124} | Louis | R^{D9} | R^{D118} | L _{C508} | R^{D116} | R^{D3} | L _{C700} | R^{D146} | R^{D133} | | L_{C125} | R^{D125} | R^{D125} | Lower | R^{D9} | R^{D119} | L _{C509} | R^{D116} | | L_{C701} | | R^{D134} | | L_{C126} | R^{D126} | R ^{D126} | L_{C318} | R^{D9} | R^{D120} | I.0510 | R ^{D116} | | L_{C702} | | R^{D135} | | L _{C127} | RD127 | R ^{D127} | L _{C319} | R^{D9} R^{D9} | RD133 | L _{C511} | R^{D116} R^{D116} | | L_{C703} | | R^{D136}
R^{D146} | | L _{C128} | RD120 | R^{D128} R^{D129} | L _{C320} | R^{D9} R^{D9} | nD135 | L _{C512}
L _{C513} | R^{D116} | | L _{C704} | | R^{D140} R^{D147} | | L _{C129} | D130 | R^{D130} | L _C 321 | R^{D9} | RD136 | L _{C513}
L _{C514} | R^{D116} | R^{D37} | L _{C705} | | R^{D149} | | L_{C130} L_{C131} | R^{D131} | R^{D131} | Long | \mathbb{R}^{D9} | R^{D143} | Lesses | R^{D116} | R^{D40} | L _{C706}
L _{C707} | | R^{D151} | | L_{C132} | R^{D132} | R^{D132} | Longe | R^{D9} | R^{D144} | Locac | R^{D116} | R^{D41} | L _{C707}
L _{C708} | R^{D146} | R^{D154} | | L_{C133} | R^{D133} | \mathbb{R}^{D133} | I | R^{D9} | R^{D145} | Locus | R^{D116} | R^{D42} | L _{C709} | | R^{D155} | | L_{C134} | R^{D134} | R^{D134} | Longe | R^{D9} | R^{D146} | Locus | R^{D116} | | L _{C710} | | R^{D161} | | L_{C135} | R ^{D135} | R ^{D135} | L _{C327} | R^{D9}_{-D0} | R^{D147} | L_{C519} | R ^{D116} | R ^{D48} | L _{C711} | | R_{-D2}^{D175} | | L_{C136} | RD136 | R^{D136} R^{D137} | L _{C328} | R^{D9} R^{D9} | R^{D149}_{DD151} | L _{C520}
L _{C521} | R^{D116} R^{D116} | | L _{C712} | R^{D133}
R^{D133} | | | L _{C137} | DD138 | R^{D138} | L _{C329} | R^{D9} | DD154 | L _{C521}
L _{C522} | R^{D116} | | L _{C713} | R^{D133} | | | L _{C138} | R^{D139} | R^{D139} | T | \mathbb{R}^{D9} | RD155 | L _{C522}
L _{C523} | R^{D116} | R^{D59} | L_{C714} L_{C715} | R^{D133} | | | L_{C139}
L_{C140} | R^{D140} | R^{D140} | Lonn | R^{D9} | R^{D161} | Lossa | R^{D116} | R^{D78} | L _{C716} | R^{D133} | | | L_{C141} | R^{D141} | R^{D141} | I | R^{D9} | $R^{D1/5}$ | L _{C525} | R^{D116} | R^{D79} | L _{C717} | R^{D133} | R^{D22} | | L_{C142} | R^{D142} | R^{D142} | T | R^{D10} | \mathbb{R}^{D3} | L_{C526} | R^{D116} | | L_{C718} | R^{D133} | | | L_{C143} | R^{D143} | R^{D143} | L_{C335} | R^{D10} | R^{D5} | L _{C527} | R^{D116} | | L _{C719} | R^{D133} | | | L _{C144} | RD144 | R^{D144} R^{D145} | L _{C336} | R^{D10} R^{D10} | $\begin{array}{c} R^{D17} \\ R^{D18} \end{array}$ | L _{C528} | R^{D116}
R^{D116} | | L _{C720}
| R^{D133}
R^{D133} | | | L _{C145} | DD146 | R^{D146} | L _{C337} | R^{D10} | R^{D20} | L _{C529} | R^{D116} | | L _{C721} | R^{D133} | | | L_{C146}
L_{C147} | R^{D147} | R^{D147} | Longo | R^{D10} | R^{D22} | L _{C530}
L _{C531} | | R^{D117} | $\mathcal{L}_{C722} \\ \mathcal{L}_{C723}$ | R^{D133} | | | L _{C148} | R^{D148} | R^{D148} | I | R^{D10} | R^{D37} | L _{C532} | R^{D116} | R^{D118} | L _{C724} | R^{D133} | | | L_{C149} | R^{D149} | R^{D149} | Lower | R^{D10} | R^{D40} | L_{C533} | R^{D116} | \mathbf{R}^{D119} | L_{C725} | R^{D133} | | | L_{C150} | R^{D150} | R^{D150} | I | R^{D10} | R^{D41} | L _{C534} | | R^{D120} | L_{C726} | R^{D133} | | | L_{C151} | RD151 | R ^{D151} | L _{C343} | \mathbf{R}^{D10} \mathbf{R}^{D10} | \mathbf{R}^{D42} \mathbf{R}^{D43} | L _{C535} | | \mathbf{R}^{D133} \mathbf{R}^{D134} | L _{C727} | R^{D133}
R^{D133} | | | L_{C152} | DD153 | R^{D152} R^{D153} | L _{C344} | R^{D10} | R^{D48} | L _{C536} | | R^{D134} | | R ^{D133} | | | L_{C153}
L_{C154} | R^{D154} | R^{D154} | T | R^{D10} | R^{D49} | L _{C537}
L _{C538} | | R^{D136} | L _{C729} | R^{D133} | | | L_{C154}
L_{C155} | \mathbb{R}^{D155} | \mathbb{R}^{D155} | I | R^{D10} | R^{D50} | L _{C539} | R^{D116} | \mathbb{R}^{D143} | I | R^{D133} | | | L _{C156} | R^{D156} | R_{D156} | I | R^{D10} | R^{D54} | L _{C540} | R^{D116} | R^{D144} | Lemm | R^{D133} | R^{D88} | | L_{C157} | R^{D157} | R^{D157} | T | R^{D10} | R^{D55} | L _{C541} | R^{D116} | R^{D145} | Loren | R^{D133} | R^{D89} | | L_{C158} | R^{D158} | R^{D158} | I | R^{D10} | R^{D58} | L_{C542} | R^{D116} | R^{D146} | I | R^{D133} | R^{D93} | | L_{C159} | RD159 | R ^{D159} | L _{C351} | $\begin{array}{c} R^{D10} \\ R^{D10} \end{array}$ | \mathbf{R}^{D59} \mathbf{R}^{D78} | L _{C543} | R ^{D116} | $\begin{array}{c} R^{D147} \\ R^{D149} \end{array}$ | L _{C735} | RD133 | R^{D117} | | L _{C160} | RD161 | R^{D160} R^{D161} | L _{C352}
I | \mathbf{p}^{D10} | \mathbf{R}^{D79} | L _{C544} | | R^{D149} R^{D151} | | | R^{D118} R^{D119} | | L _{C161} | R^{D162} | R^{D162} | I | R^{D10} | R^{D81} | L _{C545}
L _{C546} | | R^{D154} | | | R^{D120} | | L _{C162}
L _{C163} | R^{D163} | R^{D163} | Longs | R^{D10} | R^{D87} | L _{C547} | | R^{D155} | | R^{D133} | R^{D133} | | L _{C164} | R^{D164} | R^{D164} | I | \mathbf{R}^{D10} | R^{D88} | L _{C548} | | R^{D161} | L_{C740} | | R^{D134} | | L_{C165} | R^{D165} | R^{D165} | I | R^{D10} | R^{D89} | L _{C549} | | R^{D175} | L _{C741} | | R^{D135} | | L_{C166} | R^{D166} | R^{D166} | T | R^{D10} | RD93 | L_{C550} | R^{D143} | | L _{C742} | R^{D133} | R ^{D136} | | L_{C167} | RD169 | R ^{D167} | L_{C359} | $\begin{array}{c} R^{D10} \\ R^{D10} \end{array}$ | R^{D116} R^{D117} | L_{C551} | R^{D143} | | L_{C743} | | R^{D146} | | L_{C168} | R^{D168} R^{D169} | R^{D168} R^{D169} | L _{C360} | R^{D10} R^{D10} | R^{D117} R^{D118} | L _{C552} | R^{D143}
R^{D143} | | L _{C744} | | R^{D147}
R^{D149} | | L _{C169} | RD170 | R^{D170} | L-C361 | R^{D10} | R ^{D119} | | R^{D143} | | L _{C745} | | R^{D151} | | L _{C170} | R ^{D171} | R^{D171} | L _C 362 | R^{D10} | R ^{D120} | L _{C554}
L _{C555} | R^{D143} | | L _{C746} | | R^{D154} | | L_{C171} L_{C172} | R^{D172} | R^{D172} | Longe | R^{D10} | R^{D133} | Losso | R^{D143} | | ${\rm L}_{C747} \\ {\rm L}_{C748}$ | | R^{D155} | | L_{C172}
L_{C173} | R^{D173} | R^{D173} | Long | R^{D10} | R^{D134} | Loss | R^{D143} | | L _{C748}
L _{C749} | | R^{D161} | | L_{C174} | R^{D174} | R^{D174} | Longe | R^{D10} | R^{D135} | Losso | R^{D143} | | L _{C750} | | R^{D175} | | L _{C175} | R^{D175} | R^{D175} | Long | R^{D10} | R^{D136} | I. cc.co | R^{D143} | R^{D42} | L _{C751} | R^{D175} | R^{D3} | | L _{C176} | R^{D176} | R^{D176} | Long | R^{D10} | R^{D143} | Losco | R^{D143} | | L _{C752} | R^{D175} | | | L_{C177} | R^{D177} | R^{D177} | Longo | \mathbf{R}^{D10} | R^{D144} | Local | ${\bf R}^{D143}$ | | L_{C753} | R^{D175} | | | \mathcal{L}_{C178} | R^{D178} | R^{D178} | Longo | R^{D10} | R^{D145} | Lorg | R^{D143} | | L _{C754} | R^{D175} | | | L_{C179} | R^{D179} | R^{D179} | Longi | R^{D10} | R^{D146} | Loss | R^{D143} | | L_{C755} | R^{D175} | | | \mathcal{L}_{C180} | R^{D180} | R^{D180} | \mathcal{L}_{C372} | R^{D10} | R^{D147} | Loser | R^{D143} | | L _{C756} | R^{D175} | | | L_{C181} | RDISI | R ^{D181} | L_{C373} | R^{D10} | RD149 | L _{C565} | R ^{D143} | | L _{C757} | R^{D175} | | | L_{C182} | R ^{D182} | R^{D182}
R^{D183} | L _{C374} | $\mathbf{R}^{D10}\\ \mathbf{R}^{D10}$ | RD154 | L _{C566} | R^{D143} R^{D143} | | L _{C758} | R^{D175}
R^{D175} | | | L_{C183} | K | K-103 | L_{C375} | K | K-154 | L _{C567} | K 143 | K. | L_{C759} | K | K~~2 | -continued | Ligand | R^1 | R^2 | Ligand | R^1 | \mathbb{R}^2 | Ligand | R^1 | R ² | Ligand | R ¹ | R ² | |---|---|----------------------------------|---|-----------|--|--------|-----------------------|---|--|--|--| | L _{C184}
L _{C185}
L _{C186}
L _{C187}
L _{C188}
L _{C189}
L _{C190}
L _{C191}
L _{C192} | R^{D185} R^{D186} R^{D187} R^{D188} R^{D189} R^{D190} | R^{D185} R^{D186} R^{D187} | L_{C378} L_{C379} L_{C380} L_{C381} L_{C382} L_{C383} | R^{D10} | $\begin{array}{c} \mathbf{R}^{D155} \\ \mathbf{R}^{D161} \\ \mathbf{R}^{D175} \\ \mathbf{R}^{D3} \\ \mathbf{R}^{D5} \\ \mathbf{R}^{D18} \\ \mathbf{R}^{D20} \\ \mathbf{R}^{D22} \\ \mathbf{R}^{D37} \end{array}$ | L 0560 | R^{D143} R^{D143} | R^{D87} R^{D88} R^{D89} R^{D93} R^{D116} R^{D117} | L _{C766}
L _{C767} | $\begin{array}{c} \mathbf{R}^{D175} \\ \end{array}$ | $\begin{array}{c} {\rm R}^{D48} \\ {\rm R}^{D49} \\ {\rm R}^{D54} \\ {\rm R}^{D58} \\ {\rm R}^{D59} \\ {\rm R}^{D78} \\ {\rm R}^{D79} \end{array}$ | wherein R^{D1} to R^{D192} have the following structures: ho^{CH_3} , ho^{D1} ho^{CD_3} , ho^{D2} ho^{D3} ho^{D4} ho^{D5} ho^{D6} \mathbb{R}^{D7} , \mathbb{R}^{D8} \mathbb{R}^{D10} \mathbb{R}^{D12} , \mathbb{R}^{D13} \mathbb{R}^{D14} -continued \mathbb{R}^{D15} R^{D16} \mathbb{R}^{D17} \mathbb{R}^{D18} , \mathbb{R}^{D19} , Rest \mathbb{R}^{D20} \mathbb{R}^{D21} , \mathbb{R}^{D22} \mathbb{R}^{D23} R^{D24} \mathbb{R}^{D25} ${\bf R}^{D39}$ -continued R^{D26} $$\mathbb{R}^{D31}$$ $$\mathbb{R}^{D34}$$ $$\mathbb{R}^{D35}$$ $$R^{D36}$$ $$\mathbb{R}^{D37}$$ $$\mathbb{R}^{D38}$$ $$\mathbb{R}^{D42}$$ $$\bigwedge^{\mathbb{R}^{D43}},$$ $$R^{D44}$$ $$R^{D45}$$ $$R^{D50}$$ $$\mathbb{R}^{D53}$$ $$\mathbb{R}^{D55}$$ $$\mathbb{R}^{D58}$$ $$\mathbb{R}^{D60}$$, \mathbb{R}^{D61} $$\mathbb{R}^{D63}$$, $$\mathbb{R}^{D64}$$ $$\mathbb{R}^{D65}$$ $$\mathbb{R}^{D67}$$, \mathbb{R}^{D68} $$\mathbb{R}^{D71}$$ $$\mathbb{R}^{D72}$$ $$\mathbb{R}^{D73}$$, \mathbb{R}^{D74} $$\mathbb{R}^{D74}$$ $$\mathbb{R}^{D7}$$ $$\mathbb{R}^{D82}$$ $$\mathbb{R}^{D83}$$ $$\mathbb{R}^{D86}$$ $$\mathbb{R}^{D87}$$ $$\mathbb{R}^{D88}$$ $$\mathbb{R}^{D93}$$ $$R^{D94}$$ $$\mathbb{R}^{D95}$$ $$\mathbb{R}^{D97}$$ $$\mathbb{R}^{D100}$$ $$\mathbb{R}^{D102}$$ $$\mathbb{R}^{D103}$$ $$\mathbb{R}^{D105}$$ $$\mathbb{R}^{D106}$$, \mathbb{R}^{D107} , $$R^{D108}$$ $$\mathbb{R}^{D110}$$ $$\mathbb{R}^{D\Pi\Pi}$$ $$\mathbb{R}^{D112}$$ $$\mathbb{R}^{D114}$$ $$\mathbb{R}^{D115}$$ $$\mathbb{R}^{D117}$$ $$\mathbb{R}^{D118}$$, \mathbb{R}^{D119} \mathbb{R}^{D120} \mathbb{R}^{D121} \mathbb{R}^{D122} \mathbb{R}^{D123} \mathbb{R}^{D124} \mathbb{R}^{D125} \mathbb{R}^{D126} R^{D127} \mathbb{R}^{D128} -continued \mathbb{R}^{D129} \mathbb{R}^{D130} \mathbb{R}^{D131} \mathbb{R}^{D132} R^{D133} \mathbb{R}^{D134} R^{D135} \mathbb{R}^{D136} $\mathbb{R}^{D_{137}}$ R^{D153} -continued $$\mathbb{R}^{D139}$$ $$\stackrel{\mathrm{D}}{\longrightarrow} \stackrel{\mathrm{D}}{\longrightarrow} ,$$ $$\mathbb{R}^{D141}$$ $$\mathbb{R}^{D142}$$ D, , $$R^{D143}$$ $$^{\mathrm{CF}_3}$$, $^{\mathrm{R}^{D144}}$ $$CF_3$$ CF_3 , ${\rm R}^{D145}$ $$ho^{CF_3}$$, $ho^{D_{148}}$ $$\begin{array}{c} \mathbb{R}^{D150} \\ \\ \mathbb{C} \mathbb{F}_3, \end{array}$$ $$\mathbb{R}^{D151}$$ $\mathbb{C}F_3$ $\mathbb{C}F_3$, \mathbb{R}^{D152} $$CF_3$$ D CF_3 , $$CF_3$$, R^{D154} $$\mathbb{C}^{\mathrm{CF}_3}$$, $$\operatorname{CF}_3$$, $$\begin{array}{c} & & R^{D157} \\ \hline & & \\
& & \\ & & \\$$ $$_{\mathrm{CF}_3}$$, $$_{\mathrm{CF_{3}}}^{\mathrm{CF_{3}}}$$ $$CF_3$$ CF_3 , R^{D161} $$CF_3$$, R^{D162} $$\mathbb{R}^{D166}$$ \mathbb{CF}_3 $$\mathbb{R}^{D167}$$ $$\mathbb{R}^{\mathcal{D}168}$$, \mathbb{CF}_3 $$\operatorname{CF_3}$$ $\operatorname{CF_3}$, $$\operatorname{CF_3}$$, $\operatorname{CF_3}$ $$\stackrel{\text{CF}_3}{ \nearrow} ,$$ $$\mathbb{C}F_3$$, $$\mathbb{C}\mathbb{F}_3$$, $$\mathbb{C}\mathrm{F}_3$$, $$\mathbb{C}F_3$$, $$\mathbb{R}^{D181}$$ $$\mathbb{R}^{D183}$$ $$\mathbb{CF}_3$$, $$\mathbb{CF}_3$$, $$\operatorname{CF}_3$$, $$\mathrm{CF_3}$$ $\mathrm{CF_3}$ $$\operatorname{CF_3} \longrightarrow \bigcap_{\operatorname{CF_3}} \operatorname{R}^{D190}$$ $$\mathbb{C}F_3$$, and $$\mathbb{C}F_3$$ **14**. An organic electroluminescent device that includes an anode, a cathode, and an organic layer disposed between the anode and the cathode, the organic layer comprising a compound of Formula I Formula I wherein L is a bidentate ligand coordinated to a metal M; each ring K is the same, and represents a 5-membered or 6-membered heteroaryl ring and with ring J forms a 5-member cyclometallated ring; A¹ and A¹ are the same and selected from CR¹ or N; A² and A² are the same and selected from CR² or N; A³ and A³ are the same and selected from CR³ or N; each R⁴ with its corresponding ring position R⁴ are the same, wherein R⁴ or R⁴ represent mono to the maximum allowable substitution, or no substitution, R¹, R², R³, and each R⁴ are independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; or optionally, any two adjacent groups R¹, R², R³, or any two adjacent groups R⁴, can join to form a carbocyclic ring or a heterocyclic ring, which is optionally substituted; R⁵ is selected from the group consisting of alkyl, cycloalkyl, heteroalkyl, halogen, silyl, aryl, heteroaryl, and any combination thereof; and optionally, each of which is substituted. 15. The OLED of claim 14, wherein in the compound of Formula I, R^1 , R^2 , and R^3 , and each R^4 is independently hydrogen or a substituent group selected from the group consisting of: a C_1 - C_6 alkyl, which is optionally substituted; a C_5 - C_{12} cycloalkyl, which is optionally substituted; a C_6 - C_{10}^{12} aryl, which is optionally substituted; a C₅-C₁₃ heteroaryl, which is optionally substituted; and any two adjacent R¹, R² and R³, or two adjacent R⁴, join to form a ring selected from the group consisting of a fused benzene ring or an aza-analog thereof, and a fused heterocyclic ring, each of which is optionally substituted. 16. The OLED of claim 14, wherein the organic layer includes a host, wherein the host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiphene, dibenzofuran, dibenzoselenophene, azartiphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene. 17. The OLED of claim 14, wherein the organic layer includes a host, wherein the host comprises at least one chemical group selected from the group consisting of: and combinations thereof. - 18. A consumer product comprising an organic lightemitting device that includes an anode, a cathode, and an organic layer disposed between the anode and the cathode, the organic layer comprising a compound of claim 1. - 19. The OLED of claim 14, wherein the compound is a sensitizer, and the device further comprises an acceptor; and wherein the acceptor is selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof. 20. A chemical structure selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule, wherein the chemical structure comprises a compound of claim 1 or a monovalent or polyvalent variant thereof. * * * * * | 专利名称(译) | 有机电致发光材料和器件 | | | |----------------|---|----------------------------|--------------------------------| | 公开(公告)号 | US20200111976A1 | 公开(公告)日 | 2020-04-09 | | 申请号 | US16/583484 | 申请日 | 2019-09-26 | | [标]申请(专利权)人(译) | 环球展览公司 | | | | 申请(专利权)人(译) | 通用显示器公司 | | | | 当前申请(专利权)人(译) | 通用显示器公司 | | | | [标]发明人 | TSAI JUI YI
BOUDREAULT PIERRE LUC T | | | | 发明人 | TSAI, JUI-YI
BOUDREAULT, PIERRE-LUC T.
MORA, ERIK | | | | IPC分类号 | H01L51/00 C09K11/06 C07F15/00 | | | | CPC分类号 | C09K2211/1003 C07F15/0033 H0 ^{-/} /552 | 1L51/0085 C09K11/06 C09K22 | 211/185 C09K2211/1029 H01L2251 | | 优先权 | 62/742595 2018-10-08 US | | | | 外部链接 | Espacenet USPTO | | | | | | | | ## 摘要(译) 式I化合物 其中 L是与金属M配位的二齿配体; 每个环K是相同的,并且 代表5元或6元杂芳基环,并且与环J形成5元环金属化环。 A1 和A 1'相同,并且选自CR1 或N; A2 和A 2'相同,并且选自CR2 或N; A3 和A 3'相同,并且选自CR3 或N; 每个具有相应环位置R 4'的R4 都相同,并且R1 至R5 的定义与说明书中相同。 一种具有有机层的OLED,该有机层包括式I的化合物以及一种消费品,该消费品包括OLED。 还描述了制备式I化合物的方法。